Liste De Liens Python
Quelle est la meilleure façon d'utiliser une liste chaînée en python? Dans scheme, une liste liée est définie simplement par '(1 2 3 4 5)
. Les listes de Python, [1, 2, 3, 4, 5]
, et tuples, (1, 2, 3, 4, 5)
, ne sont pas, en fait, des listes liées, et les listes liées ont de belles propriétés comme la concaténation à temps constant, et peuvent faire référence à des parties séparées d'entre elles. Rendre immuable et ils sont vraiment facile à travailler avec!
26 réponses
voici quelques fonctions de liste basées sur Martin v. représentation de Löwis :
cons = lambda el, lst: (el, lst)
mklist = lambda *args: reduce(lambda lst, el: cons(el, lst), reversed(args), None)
car = lambda lst: lst[0] if lst else lst
cdr = lambda lst: lst[1] if lst else lst
nth = lambda n, lst: nth(n-1, cdr(lst)) if n > 0 else car(lst)
length = lambda lst, count=0: length(cdr(lst), count+1) if lst else count
begin = lambda *args: args[-1]
display = lambda lst: begin(w("%s " % car(lst)), display(cdr(lst))) if lst else w("nil\n")
où w = sys.stdout.write
bien que les listes doublement liées soient utilisées dans le de Raymond Hettinger," ordered set recipe , elles n'ont pas de valeur pratique en Python.
j'ai jamais utilisé une liste liée en Python pour tout problème sauf éducatif.
Thomas Watnedal suggéré une bonne ressource pédagogique how to Think Like a Computer Scientist, Chapitre 17: les listes chaînées :
une liste liée est soit:
- la liste est vide, représentée par Aucun, ou
-
nœud contenant un objet cargo et une référence à une liste liée.
class Node: def __init__(self, cargo=None, next=None): self.car = cargo self.cdr = next def __str__(self): return str(self.car) def display(lst): if lst: w("%s " % lst) display(lst.cdr) else: w("nil\n")
j'ai écrit ceci l'autre jour
#! /usr/bin/env python
class node:
def __init__(self):
self.data = None # contains the data
self.next = None # contains the reference to the next node
class linked_list:
def __init__(self):
self.cur_node = None
def add_node(self, data):
new_node = node() # create a new node
new_node.data = data
new_node.next = self.cur_node # link the new node to the 'previous' node.
self.cur_node = new_node # set the current node to the new one.
def list_print(self):
node = self.cur_node # cant point to ll!
while node:
print node.data
node = node.next
ll = linked_list()
ll.add_node(1)
ll.add_node(2)
ll.add_node(3)
ll.list_print()
la réponse acceptée est plutôt compliquée. Voici un design plus standard:
L = LinkedList()
L.insert(1)
L.insert(1)
L.insert(2)
L.insert(4)
print L
L.clear()
print L
c'est une classe simple LinkedList
basée sur la conception C++ simple et Chapitre 17: listes liées , comme recommandé par Thomas Watnedal .
class Node:
def __init__(self, value = None, next = None):
self.value = value
self.next = next
def __str__(self):
return 'Node ['+str(self.value)+']'
class LinkedList:
def __init__(self):
self.first = None
self.last = None
def insert(self, x):
if self.first == None:
self.first = Node(x, None)
self.last = self.first
elif self.last == self.first:
self.last = Node(x, None)
self.first.next = self.last
else:
current = Node(x, None)
self.last.next = current
self.last = current
def __str__(self):
if self.first != None:
current = self.first
out = 'LinkedList [\n' +str(current.value) +'\n'
while current.next != None:
current = current.next
out += str(current.value) + '\n'
return out + ']'
return 'LinkedList []'
def clear(self):
self.__init__()
les listes immuables sont mieux représentées par deux tuples, aucun ne représentant zéro. Pour permettre la formulation simple de telles listes, vous pouvez utiliser cette fonction:
def mklist(*args):
result = None
for element in reversed(args):
result = (element, result)
return result
pour travailler avec de telles listes, je préfère fournir l'ensemble des fonctions LISP (i.e. premier, deuxième, nth, etc), plutôt que d'introduire des méthodes.
Voici une version légèrement plus complexe d'une classe de liste liée, avec une interface similaire aux types de séquence de python (i.e. prend en charge l'indexation, le tranchage, la concaténation avec des séquences arbitraires, etc. Il devrait avoir O (1) pré-Démarrer, ne copie pas les données à moins qu'il n'en ait besoin et puisse être utilisé de façon assez interchangeable avec tuples.
ce ne sera pas aussi efficace dans l'espace ou le temps que les cellules lisp cons, car les classes python sont évidemment un peu plus lourdes (vous pourriez améliorer les choses légèrement avec " __slots__ = '_head','_tail'
" pour réduire l'utilisation de la mémoire). Il aura cependant les caractéristiques de performance big O souhaitées.
exemple d'usage:
>>> l = LinkedList([1,2,3,4])
>>> l
LinkedList([1, 2, 3, 4])
>>> l.head, l.tail
(1, LinkedList([2, 3, 4]))
# Prepending is O(1) and can be done with:
LinkedList.cons(0, l)
LinkedList([0, 1, 2, 3, 4])
# Or prepending arbitrary sequences (Still no copy of l performed):
[-1,0] + l
LinkedList([-1, 0, 1, 2, 3, 4])
# Normal list indexing and slice operations can be performed.
# Again, no copy is made unless needed.
>>> l[1], l[-1], l[2:]
(2, 4, LinkedList([3, 4]))
>>> assert l[2:] is l.next.next
# For cases where the slice stops before the end, or uses a
# non-contiguous range, we do need to create a copy. However
# this should be transparent to the user.
>>> LinkedList(range(100))[-10::2]
LinkedList([90, 92, 94, 96, 98])
mise en Œuvre:
import itertools
class LinkedList(object):
"""Immutable linked list class."""
def __new__(cls, l=[]):
if isinstance(l, LinkedList): return l # Immutable, so no copy needed.
i = iter(l)
try:
head = i.next()
except StopIteration:
return cls.EmptyList # Return empty list singleton.
tail = LinkedList(i)
obj = super(LinkedList, cls).__new__(cls)
obj._head = head
obj._tail = tail
return obj
@classmethod
def cons(cls, head, tail):
ll = cls([head])
if not isinstance(tail, cls):
tail = cls(tail)
ll._tail = tail
return ll
# head and tail are not modifiable
@property
def head(self): return self._head
@property
def tail(self): return self._tail
def __nonzero__(self): return True
def __len__(self):
return sum(1 for _ in self)
def __add__(self, other):
other = LinkedList(other)
if not self: return other # () + l = l
start=l = LinkedList(iter(self)) # Create copy, as we'll mutate
while l:
if not l._tail: # Last element?
l._tail = other
break
l = l._tail
return start
def __radd__(self, other):
return LinkedList(other) + self
def __iter__(self):
x=self
while x:
yield x.head
x=x.tail
def __getitem__(self, idx):
"""Get item at specified index"""
if isinstance(idx, slice):
# Special case: Avoid constructing a new list, or performing O(n) length
# calculation for slices like l[3:]. Since we're immutable, just return
# the appropriate node. This becomes O(start) rather than O(n).
# We can't do this for more complicated slices however (eg [l:4]
start = idx.start or 0
if (start >= 0) and (idx.stop is None) and (idx.step is None or idx.step == 1):
no_copy_needed=True
else:
length = len(self) # Need to calc length.
start, stop, step = idx.indices(length)
no_copy_needed = (stop == length) and (step == 1)
if no_copy_needed:
l = self
for i in range(start):
if not l: break # End of list.
l=l.tail
return l
else:
# We need to construct a new list.
if step < 1: # Need to instantiate list to deal with -ve step
return LinkedList(list(self)[start:stop:step])
else:
return LinkedList(itertools.islice(iter(self), start, stop, step))
else:
# Non-slice index.
if idx < 0: idx = len(self)+idx
if not self: raise IndexError("list index out of range")
if idx == 0: return self.head
return self.tail[idx-1]
def __mul__(self, n):
if n <= 0: return Nil
l=self
for i in range(n-1): l += self
return l
def __rmul__(self, n): return self * n
# Ideally we should compute the has ourselves rather than construct
# a temporary tuple as below. I haven't impemented this here
def __hash__(self): return hash(tuple(self))
def __eq__(self, other): return self._cmp(other) == 0
def __ne__(self, other): return not self == other
def __lt__(self, other): return self._cmp(other) < 0
def __gt__(self, other): return self._cmp(other) > 0
def __le__(self, other): return self._cmp(other) <= 0
def __ge__(self, other): return self._cmp(other) >= 0
def _cmp(self, other):
"""Acts as cmp(): -1 for self<other, 0 for equal, 1 for greater"""
if not isinstance(other, LinkedList):
return cmp(LinkedList,type(other)) # Arbitrary ordering.
A, B = iter(self), iter(other)
for a,b in itertools.izip(A,B):
if a<b: return -1
elif a > b: return 1
try:
A.next()
return 1 # a has more items.
except StopIteration: pass
try:
B.next()
return -1 # b has more items.
except StopIteration: pass
return 0 # Lists are equal
def __repr__(self):
return "LinkedList([%s])" % ', '.join(map(repr,self))
class EmptyList(LinkedList):
"""A singleton representing an empty list."""
def __new__(cls):
return object.__new__(cls)
def __iter__(self): return iter([])
def __nonzero__(self): return False
@property
def head(self): raise IndexError("End of list")
@property
def tail(self): raise IndexError("End of list")
# Create EmptyList singleton
LinkedList.EmptyList = EmptyList()
del EmptyList
class Node(object):
def __init__(self, data=None, next=None):
self.data = data
self.next = next
def setData(self, data):
self.data = data
return self.data
def setNext(self, next):
self.next = next
def getNext(self):
return self.next
def hasNext(self):
return self.next != None
class singleLinkList(object):
def __init__(self):
self.head = None
def isEmpty(self):
return self.head == None
def insertAtBeginning(self, data):
newNode = Node()
newNode.setData(data)
if self.listLength() == 0:
self.head = newNode
else:
newNode.setNext(self.head)
self.head = newNode
def insertAtEnd(self, data):
newNode = Node()
newNode.setData(data)
current = self.head
while current.getNext() != None:
current = current.getNext()
current.setNext(newNode)
def listLength(self):
current = self.head
count = 0
while current != None:
count += 1
current = current.getNext()
return count
def print_llist(self):
current = self.head
print("List Start.")
while current != None:
print(current.getData())
current = current.getNext()
print("List End.")
if __name__ == '__main__':
ll = singleLinkList()
ll.insertAtBeginning(55)
ll.insertAtEnd(56)
ll.print_llist()
print(ll.listLength())
llist liste Liée types de données en Python
llist module implémente une liste chaînée de structures de données. Il supporte une liste à double lien, i.e. dllist
et une structure de données à un seul lien sllist
.
dllist objets
cet objet représente une structure de données de liste doublement liée.
first
Première dllistnode
objet dans la liste. None
si la liste est vide.
last
Dernier dllistnode
objet dans la liste. Aucun si la liste est vide.
les objets dllist supportent aussi les méthodes suivantes:
append(x)
ajouter x
au côté droit de la liste et ajouter dllistnode
.
appendleft(x)
ajouter x
à le côté gauche de la liste et retour inséré dllistnode
.
appendright(x)
ajouter x
au côté droit de la liste et ajouter dllistnode
.
clear()
supprimer tous les noeuds de la liste.
extend(iterable)
ajouter les éléments de iterable
au côté droit de la liste.
extendleft(iterable)
ajouter les éléments de iterable
au côté gauche de la liste.
extendright(iterable)
ajouter les éléments de iterable
au côté droit de la liste.
insert(x[, before])
ajouter x
au côté droit de la liste si before
n'est pas spécifié, ou ajouter x
au côté gauche de dllistnode before
. Retour inséré dllistnode
.
nodeat(index)
Retour nœud (de type dllistnode
) à index
.
pop()
supprimer et retourner la valeur d'un élément du côté droit de la liste.
popleft()
supprimer et retourner la valeur d'un élément du côté gauche de la liste.
popright()
supprimer et retourner la valeur d'un élément du côté droit de la liste
remove(node)
Supprimer node
de la liste et retourner l'élément qui y était stocké.
dllistnode
objets
classe llist.dllistnode([value])
renvoie un nouveau noeud de liste doublement lié, initialisé (en option) avec value
.
dllistnode
les objets fournissent attributs suivants:
next
noeud suivant dans la liste. Cet attribut est en lecture seule.
prev
noeud précédent dans la liste. Cet attribut est en lecture seule.
value
valeur stockée dans ce noeud. compilé à partir de cette référence
sllist
classe llist.sllist([iterable])
Retourner une nouvelle liste à liens simples initialisée avec des éléments de iterable
. Si iterable n'est pas spécifié, le nouveau sllist
est vide.
un ensemble similaire d'attributs et d'opérations est défini pour cet objet sllist
. Voir cette référence pour plus d'informations.
j'ai basé cette fonction supplémentaire sur Nick Stinemates
def add_node_at_end(self, data):
new_node = Node()
node = self.curr_node
while node:
if node.next == None:
node.next = new_node
new_node.next = None
new_node.data = data
node = node.next
la méthode qu'il a ajoute le nouveau noeud au début alors que j'ai vu beaucoup d'implémentations qui ajoutent habituellement un nouveau noeud à la fin, mais quoi qu'il en soit, c'est amusant à faire.
voici ce que j'ai trouvé. C'est similaire à de Riccardo C. , dans ce thread, sauf qu'il imprime les nombres dans l'ordre au lieu de dans le sens inverse. J'ai aussi fait de L'objet LinkedList un itérateur Python afin d'Imprimer la liste comme vous le feriez pour une liste Python normale.
class Node:
def __init__(self, data=None):
self.data = data
self.next = None
def __str__(self):
return str(self.data)
class LinkedList:
def __init__(self):
self.head = None
self.curr = None
self.tail = None
def __iter__(self):
return self
def next(self):
if self.head and not self.curr:
self.curr = self.head
return self.curr
elif self.curr.next:
self.curr = self.curr.next
return self.curr
else:
raise StopIteration
def append(self, data):
n = Node(data)
if not self.head:
self.head = n
self.tail = n
else:
self.tail.next = n
self.tail = self.tail.next
# Add 5 nodes
ll = LinkedList()
for i in range(1, 6):
ll.append(i)
# print out the list
for n in ll:
print n
"""
Example output:
$ python linked_list.py
1
2
3
4
5
"""
j'ai juste fait ce comme un jouet amusant. Il devrait être immuable tant que vous ne touchez pas aux méthodes préfixées par les soulignements, et il implémente un tas de magie Python comme l'indexation et len
.
lors de l'utilisation de listes liées immuables, envisagez D'utiliser directement le tuple de Python.
ls = (1, 2, 3, 4, 5)
def first(ls): return ls[0]
def rest(ls): return ls[1:]
C'est vraiment aussi facile, et vous pouvez garder les fonctionnalités supplémentaires comme Len(ls), x en ls, etc.
class LL(object):
def __init__(self,val):
self.val = val
self.next = None
def pushNodeEnd(self,top,val):
if top is None:
top.val=val
top.next=None
else:
tmp=top
while (tmp.next != None):
tmp=tmp.next
newNode=LL(val)
newNode.next=None
tmp.next=newNode
def pushNodeFront(self,top,val):
if top is None:
top.val=val
top.next=None
else:
newNode=LL(val)
newNode.next=top
top=newNode
def popNodeFront(self,top):
if top is None:
return
else:
sav=top
top=top.next
return sav
def popNodeEnd(self,top):
if top is None:
return
else:
tmp=top
while (tmp.next != None):
prev=tmp
tmp=tmp.next
prev.next=None
return tmp
top=LL(10)
top.pushNodeEnd(top, 20)
top.pushNodeEnd(top, 30)
pop=top.popNodeEnd(top)
print (pop.val)
j'ai mis un Python 2.x et 3.x classe de liste à lien unique à https://pypi.python.org/pypi/linked_list_mod/
testé avec CPython 2.7, CPython 3.4, Pypy 2.3.1, Pypy3 2.3.1, et Jython 2.7b2, et est livré avec une belle suite de test automatisée.
comprend également les classes LIFO et FIFO.
ils ne sont pas immuables.
class LinkedStack:
'''LIFO Stack implementation using a singly linked list for storage.'''
_ToList = []
#---------- nested _Node class -----------------------------
class _Node:
'''Lightweight, nonpublic class for storing a singly linked node.'''
__slots__ = '_element', '_next' #streamline memory usage
def __init__(self, element, next):
self._element = element
self._next = next
#--------------- stack methods ---------------------------------
def __init__(self):
'''Create an empty stack.'''
self._head = None
self._size = 0
def __len__(self):
'''Return the number of elements in the stack.'''
return self._size
def IsEmpty(self):
'''Return True if the stack is empty'''
return self._size == 0
def Push(self,e):
'''Add element e to the top of the Stack.'''
self._head = self._Node(e, self._head) #create and link a new node
self._size +=1
self._ToList.append(e)
def Top(self):
'''Return (but do not remove) the element at the top of the stack.
Raise exception if the stack is empty
'''
if self.IsEmpty():
raise Exception('Stack is empty')
return self._head._element #top of stack is at head of list
def Pop(self):
'''Remove and return the element from the top of the stack (i.e. LIFO).
Raise exception if the stack is empty
'''
if self.IsEmpty():
raise Exception('Stack is empty')
answer = self._head._element
self._head = self._head._next #bypass the former top node
self._size -=1
self._ToList.remove(answer)
return answer
def Count(self):
'''Return how many nodes the stack has'''
return self.__len__()
def Clear(self):
'''Delete all nodes'''
for i in range(self.Count()):
self.Pop()
def ToList(self):
return self._ToList
Liste Liée Classe
class LinkedStack:
# Nested Node Class
class Node:
def __init__(self, element, next):
self.__element = element
self.__next = next
def get_next(self):
return self.__next
def get_element(self):
return self.__element
def __init__(self):
self.head = None
self.size = 0
self.data = []
def __len__(self):
return self.size
def __str__(self):
return str(self.data)
def is_empty(self):
return self.size == 0
def push(self, e):
newest = self.Node(e, self.head)
self.head = newest
self.size += 1
self.data.append(newest)
def top(self):
if self.is_empty():
raise Empty('Stack is empty')
return self.head.__element
def pop(self):
if self.is_empty():
raise Empty('Stack is empty')
answer = self.head.element
self.head = self.head.next
self.size -= 1
return answer
Utilisation
from LinkedStack import LinkedStack
x = LinkedStack()
x.push(10)
x.push(25)
x.push(55)
for i in range(x.size - 1, -1, -1):
print '|', x.data[i].get_element(), '|' ,
#next object
if x.data[i].get_next() == None:
print '--> None'
else:
print x.data[i].get_next().get_element(), '-|----> ',
Sortie
| 55 | 25 -|----> | 25 | 10 -|----> | 10 | --> None
voici ma mise en œuvre simple:
class Node:
def __init__(self):
self.data = None
self.next = None
def __str__(self):
return "Data %s: Next -> %s"%(self.data, self.next)
class LinkedList:
def __init__(self):
self.head = Node()
self.curNode = self.head
def insertNode(self, data):
node = Node()
node.data = data
node.next = None
if self.head.data == None:
self.head = node
self.curNode = node
else:
self.curNode.next = node
self.curNode = node
def printList(self):
print self.head
l = LinkedList()
l.insertNode(1)
l.insertNode(2)
l.insertNode(34)
sortie:
Data 1: Next -> Data 2: Next -> Data 34: Next -> Data 4: Next -> None
voici ma solution:
mise en Œuvre
class Node:
def __init__(self, initdata):
self.data = initdata
self.next = None
def get_data(self):
return self.data
def set_data(self, data):
self.data = data
def get_next(self):
return self.next
def set_next(self, node):
self.next = node
# ------------------------ Link List class ------------------------------- #
class LinkList:
def __init__(self):
self.head = None
def is_empty(self):
return self.head == None
def traversal(self, data=None):
node = self.head
index = 0
found = False
while node is not None and not found:
if node.get_data() == data:
found = True
else:
node = node.get_next()
index += 1
return (node, index)
def size(self):
_, count = self.traversal(None)
return count
def search(self, data):
node, _ = self.traversal(data)
return node
def add(self, data):
node = Node(data)
node.set_next(self.head)
self.head = node
def remove(self, data):
previous_node = None
current_node = self.head
found = False
while current_node is not None and not found:
if current_node.get_data() == data:
found = True
if previous_node:
previous_node.set_next(current_node.get_next())
else:
self.head = current_node
else:
previous_node = current_node
current_node = current_node.get_next()
return found
Utilisation
link_list = LinkList()
link_list.add(10)
link_list.add(20)
link_list.add(30)
link_list.add(40)
link_list.add(50)
link_list.size()
link_list.search(30)
link_list.remove(20)
Origine De La Mise En Œuvre De L'Idée
je pense que la mise en œuvre ci-dessous remplir le projet de loi assez gracieusement.
'''singly linked lists, by Yingjie Lan, December 1st, 2011'''
class linkst:
'''Singly linked list, with pythonic features.
The list has pointers to both the first and the last node.'''
__slots__ = ['data', 'next'] #memory efficient
def __init__(self, iterable=(), data=None, next=None):
'''Provide an iterable to make a singly linked list.
Set iterable to None to make a data node for internal use.'''
if iterable is not None:
self.data, self.next = self, None
self.extend(iterable)
else: #a common node
self.data, self.next = data, next
def empty(self):
'''test if the list is empty'''
return self.next is None
def append(self, data):
'''append to the end of list.'''
last = self.data
self.data = last.next = linkst(None, data)
#self.data = last.next
def insert(self, data, index=0):
'''insert data before index.
Raise IndexError if index is out of range'''
curr, cat = self, 0
while cat < index and curr:
curr, cat = curr.next, cat+1
if index<0 or not curr:
raise IndexError(index)
new = linkst(None, data, curr.next)
if curr.next is None: self.data = new
curr.next = new
def reverse(self):
'''reverse the order of list in place'''
current, prev = self.next, None
while current: #what if list is empty?
next = current.next
current.next = prev
prev, current = current, next
if self.next: self.data = self.next
self.next = prev
def delete(self, index=0):
'''remvoe the item at index from the list'''
curr, cat = self, 0
while cat < index and curr.next:
curr, cat = curr.next, cat+1
if index<0 or not curr.next:
raise IndexError(index)
curr.next = curr.next.next
if curr.next is None: #tail
self.data = curr #current == self?
def remove(self, data):
'''remove first occurrence of data.
Raises ValueError if the data is not present.'''
current = self
while current.next: #node to be examined
if data == current.next.data: break
current = current.next #move on
else: raise ValueError(data)
current.next = current.next.next
if current.next is None: #tail
self.data = current #current == self?
def __contains__(self, data):
'''membership test using keyword 'in'.'''
current = self.next
while current:
if data == current.data:
return True
current = current.next
return False
def __iter__(self):
'''iterate through list by for-statements.
return an iterator that must define the __next__ method.'''
itr = linkst()
itr.next = self.next
return itr #invariance: itr.data == itr
def __next__(self):
'''the for-statement depends on this method
to provide items one by one in the list.
return the next data, and move on.'''
#the invariance is checked so that a linked list
#will not be mistakenly iterated over
if self.data is not self or self.next is None:
raise StopIteration()
next = self.next
self.next = next.next
return next.data
def __repr__(self):
'''string representation of the list'''
return 'linkst(%r)'%list(self)
def __str__(self):
'''converting the list to a string'''
return '->'.join(str(i) for i in self)
#note: this is NOT the class lab! see file linked.py.
def extend(self, iterable):
'''takes an iterable, and append all items in the iterable
to the end of the list self.'''
last = self.data
for i in iterable:
last.next = linkst(None, i)
last = last.next
self.data = last
def index(self, data):
'''TODO: return first index of data in the list self.
Raises ValueError if the value is not present.'''
#must not convert self to a tuple or any other containers
current, idx = self.next, 0
while current:
if current.data == data: return idx
current, idx = current.next, idx+1
raise ValueError(data)
class LinkedList:
def __init__(self, value):
self.value = value
self.next = None
def insert(self, node):
if not self.next:
self.next = node
else:
self.next.insert(node)
def __str__(self):
if self.next:
return '%s -> %s' % (self.value, str(self.next))
else:
return ' %s ' % self.value
if __name__ == "__main__":
items = ['a', 'b', 'c', 'd', 'e']
ll = None
for item in items:
if ll:
next_ll = LinkedList(item)
ll.insert(next_ll)
else:
ll = LinkedList(item)
print('[ %s ]' % ll)
tout d'Abord, je suppose que vous voulez des listes liées. En pratique , vous pouvez utiliser collections.deque
, dont L'implémentation actuelle de CPython est une liste de blocs doublement liés (chaque bloc contient un tableau de 62 objets cargo). Il sous-entend la fonctionnalité de la liste liée. Vous pouvez également rechercher une extension C appelée llist
sur pypi. Si vous voulez une implémentation pure-Python et facile à suivre de la liste ADT liée, vous pouvez jeter un oeil à mon implémentation minimale suivante.
class Node (object):
""" Node for a linked list. """
def __init__ (self, value, next=None):
self.value = value
self.next = next
class LinkedList (object):
""" Linked list ADT implementation using class.
A linked list is a wrapper of a head pointer
that references either None, or a node that contains
a reference to a linked list.
"""
def __init__ (self, iterable=()):
self.head = None
for x in iterable:
self.head = Node(x, self.head)
def __iter__ (self):
p = self.head
while p is not None:
yield p.value
p = p.next
def prepend (self, x): # 'appendleft'
self.head = Node(x, self.head)
def reverse (self):
""" In-place reversal. """
p = self.head
self.head = None
while p is not None:
p0, p = p, p.next
p0.next = self.head
self.head = p0
if __name__ == '__main__':
ll = LinkedList([6,5,4])
ll.prepend(3); ll.prepend(2)
print list(ll)
ll.reverse()
print list(ll)
Exemple d'un doublement liste (enregistrer sous linkedlist.py):
class node:
def __init__(self, before=None, cargo=None, next=None):
self._previous = before
self._cargo = cargo
self._next = next
def __str__(self):
return str(self._cargo) or None
class linkedList:
def __init__(self):
self._head = None
self._length = 0
def add(self, cargo):
n = node(None, cargo, self._head)
if self._head:
self._head._previous = n
self._head = n
self._length += 1
def search(self,cargo):
node = self._head
while (node and node._cargo != cargo):
node = node._next
return node
def delete(self,cargo):
node = self.search(cargo)
if node:
prev = node._previous
nx = node._next
if prev:
prev._next = node._next
else:
self._head = nx
nx._previous = None
if nx:
nx._previous = prev
else:
prev._next = None
self._length -= 1
def __str__(self):
print 'Size of linked list: ',self._length
node = self._head
while node:
print node
node = node._next
Test (enregistrer sous test.py):
from linkedlist import node, linkedList
def test():
print 'Testing Linked List'
l = linkedList()
l.add(10)
l.add(20)
l.add(30)
l.add(40)
l.add(50)
l.add(60)
print 'Linked List after insert nodes:'
l.__str__()
print 'Search some value, 30:'
node = l.search(30)
print node
print 'Delete some value, 30:'
node = l.delete(30)
l.__str__()
print 'Delete first element, 60:'
node = l.delete(60)
l.__str__()
print 'Delete last element, 10:'
node = l.delete(10)
l.__str__()
if __name__ == "__main__":
test()
Sortie :
Testing Linked List
Linked List after insert nodes:
Size of linked list: 6
60
50
40
30
20
10
Search some value, 30:
30
Delete some value, 30:
Size of linked list: 5
60
50
40
20
10
Delete first element, 60:
Size of linked list: 4
50
40
20
10
Delete last element, 10:
Size of linked list: 3
50
40
20
My 2 cents
class Node:
def __init__(self, value=None, next=None):
self.value = value
self.next = next
def __str__(self):
return str(self.value)
class LinkedList:
def __init__(self):
self.first = None
self.last = None
def add(self, x):
current = Node(x, None)
try:
self.last.next = current
except AttributeError:
self.first = current
self.last = current
else:
self.last = current
def print_list(self):
node = self.first
while node:
print node.value
node = node.next
ll = LinkedList()
ll.add("1st")
ll.add("2nd")
ll.add("3rd")
ll.add("4th")
ll.add("5th")
ll.print_list()
# Result:
# 1st
# 2nd
# 3rd
# 4th
# 5th
enter code here
enter code here
class node:
def __init__(self):
self.data = None
self.next = None
class linked_list:
def __init__(self):
self.cur_node = None
self.head = None
def add_node(self,data):
new_node = node()
if self.head == None:
self.head = new_node
self.cur_node = new_node
new_node.data = data
new_node.next = None
self.cur_node.next = new_node
self.cur_node = new_node
def list_print(self):
node = self.head
while node:
print (node.data)
node = node.next
def delete(self):
node = self.head
next_node = node.next
del(node)
self.head = next_node
a = linked_list()
a.add_node(1)
a.add_node(2)
a.add_node(3)
a.add_node(4)
a.delete()
a.list_print()
ma double liste de liens pourrait être compréhensible pour les noobies.. Si vous êtes familier avec DS en C, c'est tout à fait lisible.
# LinkedList..
class node:
def __init__(self): //Cluster of Nodes' properties
self.data=None
self.next=None
self.prev=None
class linkedList():
def __init__(self):
self.t = node() // for future use
self.cur_node = node() // current node
self.start=node()
def add(self,data): // appending the LL
self.new_node = node()
self.new_node.data=data
if self.cur_node.data is None:
self.start=self.new_node //For the 1st node only
self.cur_node.next=self.new_node
self.new_node.prev=self.cur_node
self.cur_node=self.new_node
def backward_display(self): //Displays LL backwards
self.t=self.cur_node
while self.t.data is not None:
print(self.t.data)
self.t=self.t.prev
def forward_display(self): //Displays LL Forward
self.t=self.start
while self.t.data is not None:
print(self.t.data)
self.t=self.t.next
if self.t.next is None:
print(self.t.data)
break
def main(self): //This is kind of the main
function in C
ch=0
while ch is not 4: //Switch-case in C
ch=int(input("Enter your choice:"))
if ch is 1:
data=int(input("Enter data to be added:"))
ll.add(data)
ll.main()
elif ch is 2:
ll.forward_display()
ll.main()
elif ch is 3:
ll.backward_display()
ll.main()
else:
print("Program ends!!")
return
ll=linkedList()
ll.main()
bien que beaucoup plus de simplifications puissent être ajoutées à ce code, j'ai pensé qu'une implémentation brute me permettrait de plus m'accaparer.
si vous voulez créer une simple liste de préférences, référez-vous à ce code
l=[1,[2,[3,[4,[5,[6,[7,[8,[9,[10]]]]]]]]]]
pour visualiser l'exécution pour ce cod visitez http://www.pythontutor.com/visualize.html#mode=edit