Mettez des étoiles sur les barplots ggplot et les boxplots-pour indiquer le niveau de signification (valeur p)

il est courant de mettre des étoiles sur des barplots ou des boxplots pour montrer le niveau de signification (valeur p) d'un ou entre deux groupes, voici quelques exemples:

enter image description hereenter image description hereenter image description here

le nombre d'étoiles est défini par la valeur p, par exemple on peut mettre 3 étoiles pour la valeur p < 0,001, deux étoiles pour la valeur p < 0,01, et ainsi de suite (bien que cela change d'un article à l'autre).

et mes questions: comment générer similaire les graphiques? Les méthodes qui mettent automatiquement les étoiles en fonction du niveau de signification sont plus que bienvenues.

30
demandé sur Ali 2013-06-13 14:17:18

4 réponses

Veuillez trouver ma tentative ci-dessous.

Example plot

tout d'abord, j'ai créé quelques données factices et un plan à barres qui peut être modifié comme nous le souhaitons.

windows(4,4)

dat <- data.frame(Group = c("S1", "S1", "S2", "S2"),
                  Sub   = c("A", "B", "A", "B"),
                  Value = c(3,5,7,8))  

## Define base plot
p <-
ggplot(dat, aes(Group, Value)) +
    theme_bw() + theme(panel.grid = element_blank()) +
    coord_cartesian(ylim = c(0, 15)) +
    scale_fill_manual(values = c("grey80", "grey20")) +
    geom_bar(aes(fill = Sub), stat="identity", position="dodge", width=.5)

ajouter des astérisques au-dessus d'une colonne est facile, comme baptiste l'a déjà mentionné. Il suffit de créer un data.frame avec les coordonnées.

label.df <- data.frame(Group = c("S1", "S2"),
                       Value = c(6, 9))

p + geom_text(data = label.df, label = "***")

pour ajouter les arcs qui indiquent une comparaison de sous-groupe, j'ai calculé les coordonnées paramétriques d'un demi-cercle et je les ai ajoutés reliés avec geom_line. Astérisque besoin de nouvelles coordonnées, trop.

label.df <- data.frame(Group = c(1,1,1, 2,2,2),
                       Value = c(6.5,6.8,7.1, 9.5,9.8,10.1))

# Define arc coordinates
r <- 0.15
t <- seq(0, 180, by = 1) * pi / 180
x <- r * cos(t)
y <- r*5 * sin(t)

arc.df <- data.frame(Group = x, Value = y)

p2 <-
p + geom_text(data = label.df, label = "*") +
    geom_line(data = arc.df, aes(Group+1, Value+5.5), lty = 2) +
    geom_line(data = arc.df, aes(Group+2, Value+8.5), lty = 2)

Enfin, pour indiquer la comparaison entre les groupes, j'ai construit un cercle plus large et aplatie au sommet.

r <- .5
x <- r * cos(t)
y <- r*4 * sin(t)
y[20:162] <- y[20] # Flattens the arc

arc.df <- data.frame(Group = x, Value = y)

p2 + geom_line(data = arc.df, aes(Group+1.5, Value+11), lty = 2) +
     geom_text(x = 1.5, y = 12, label = "***")
33
répondu Jens Tierling 2014-11-22 02:17:17

je sais que c'est une vieille question et la réponse de Jens Tierling fournit déjà une solution au problème. Mais j'ai récemment créé une extension ggplot qui simplifie tout le processus d'ajout de barres de signification: ggsignif

au lieu d'ajouter legeom_line et geom_text à votre parcelle vous ajoutez juste un calque simple geom_signif:

library(ggplot2)
library(ggsignif)

ggplot(iris, aes(x=Species, y=Sepal.Length)) + 
  geom_boxplot() +
  geom_signif(comparisons = list(c("versicolor", "virginica")), 
              map_signif_level=TRUE)

Boxplot with significance bar

pour créer un tracé plus avancé similaire à celui montré par Jens Tierling, vous pouvez faire:

dat <- data.frame(Group = c("S1", "S1", "S2", "S2"),
              Sub   = c("A", "B", "A", "B"),
              Value = c(3,5,7,8))  

ggplot(dat, aes(Group, Value)) +
  geom_bar(aes(fill = Sub), stat="identity", position="dodge", width=.5) +
  geom_signif(stat="identity",
              data=data.frame(x=c(0.875, 1.875), xend=c(1.125, 2.125),
                              y=c(5.8, 8.5), annotation=c("**", "NS")),
              aes(x=x,xend=xend, y=y, yend=y, annotation=annotation)) +
  geom_signif(comparisons=list(c("S1", "S2")), annotations="***",
              y_position = 9.3, tip_length = 0, vjust=0.4) +
  scale_fill_manual(values = c("grey80", "grey20"))

enter image description here

la documentation complète du paquet est disponible à CRAN.

27
répondu Artjom 2017-04-05 12:33:48

Il y a aussi une extension du ggsignif paquet ggpubr c'est plus puissant quand il s'agit de comparaisons multi-groupes. Il s'appuie sur ggsignif, mais aussi sur anova et kruskal-wallis ainsi que sur des comparaisons par paire avec la moyenne de gobal.

Exemple:

ggboxplot(ToothGrowth, x = "dose", y = "len",
          color = "dose", palette = "jco")+ 
  stat_compare_means(comparisons = my_comparisons, label.y = c(29, 35, 40))+
  stat_compare_means(label.y = 45)

enter image description here

13
répondu Holger Brandl 2017-07-24 09:51:11

Fait ma propre fonction:

ts_test <- function(dataL,x,y,method="t.test",idCol=NULL,paired=F,label = "p.signif",p.adjust.method="none",alternative = c("two.sided", "less", "greater"),...) {
    options(scipen = 999)

    annoList <- list()

    setDT(dataL)

    if(paired) {
        allSubs <- dataL[,.SD,.SDcols=idCol] %>% na.omit %>% unique
        dataL   <- dataL[,merge(.SD,allSubs,by=idCol,all=T),by=x]  #idCol!!!
    }

    if(method =="t.test") {
        dataA <- eval(parse(text=paste0(
                       "dataL[,.(",as.name(y),"=mean(get(y),na.rm=T),sd=sd(get(y),na.rm=T)),by=x] %>% setDF"
                       )))
        res<-pairwise.t.test(x=dataL[[y]], g=dataL[[x]], p.adjust.method = p.adjust.method,
                        pool.sd = !paired, paired = paired,
                        alternative = alternative, ...)
    }

    if(method =="wilcox.test") {
        dataA <- eval(parse(text=paste0(
            "dataL[,.(",as.name(y),"=median(get(y),na.rm=T),sd=IQR(get(y),na.rm=T,type=6)),by=x] %>% setDF"
        )))
        res<-pairwise.wilcox.test(x=dataL[[y]], g=dataL[[x]], p.adjust.method = p.adjust.method,
                             paired = paired, ...)
    }

    #Output the groups
    res$p.value %>% dimnames %>%  {paste(.[[2]],.[[1]],sep="_")} %>% cat("Groups ",.)

    #Make annotations ready
    annoList[["label"]] <- res$p.value %>% diag %>% round(5)

    if(!is.null(label)) {
        if(label == "p.signif"){
            annoList[["label"]] %<>% cut(.,breaks = c(-0.1, 0.0001, 0.001, 0.01, 0.05, 1),
                                         labels = c("****", "***", "**", "*", "ns")) %>% as.character
        }
    }

    annoList[["x"]] <- dataA[[x]] %>% {diff(.)/2 + .[-length(.)]}
    annoList[["y"]] <- {dataA[[y]] + dataA[["sd"]]} %>% {pmax(lag(.), .)} %>% na.omit

    #Make plot
    coli="#0099ff";sizei=1.3

    p <-ggplot(dataA, aes(x=get(x), y=get(y))) + 
        geom_errorbar(aes(ymin=len-sd, ymax=len+sd),width=.1,color=coli,size=sizei) +
        geom_line(color=coli,size=sizei) + geom_point(color=coli,size=sizei) + 
        scale_color_brewer(palette="Paired") + theme_minimal() +
        xlab(x) + ylab(y) + ggtitle("title","subtitle")


    #Annotate significances
    p <-p + annotate("text", x = annoList[["x"]], y = annoList[["y"]], label = annoList[["label"]])

    return(p)
}

Données et de les appeler:

library(ggplot2);library(data.table);library(magrittr);

df_long    <- rbind(ToothGrowth[,-2],data.frame(len=40:50,dose=3.0))
df_long$ID <- data.table::rowid(df_long$dose)

ts_test(dataL=df_long,x="dose",y="len",idCol="ID",method="wilcox.test",paired=T)

Résultat:

enter image description here

2
répondu Andre Elrico 2018-02-28 11:20:07