mise en œuvre de l'arborescence de recherche binaire javascript
Quelqu'un connaît-il de bons exemples d'une simple implémentation BTree en Javascript? J'ai un tas de "choses" qui arrivent au hasard, et je veux les insérer efficacement.
finalement, chaque nouveau sera inséré dans le DOM en fonction de l'endroit où il finit dans l'arbre.
je peux le coder à partir de zéro mais je préfère ne pas réinventer les roues.
merci
5 réponses
cela vous aide? - informatique en JavaScript: arbre de recherche binaire, Partie 1
si c'est important, j'ai trouvé que stocker ce genre de données comme un arbre littéral était moins efficace que le stocker comme un tableau déjà trié et faire une recherche binaire sur le tableau pour splice/insert éléments. La création d'un objet JavaScript n'est pas gratuite, apparemment.
Il y a également l'ol " encoder-un-arbre-dans-un-tableau astuce:
[5, 3, 7, 1, null, 6, 9, null, null, null, null, null, null]
est le même que
5
/ \
3 7
/ / \
1 6 9
i.e. enfants (N[i]) = N[2i+1], N[2i+2] . Je ne sais pas si cela vous donne vraiment un gain en JavaScript.
si vous essayez des alternatives à l'arbre binaire, pouvez-vous poster vos résultats ici? :)
https://gist.github.com/alexhawkins/f993569424789f3be5db
function BinarySearchTree() {
this.root = null;
}
BinarySearchTree.prototype.makeNode = function(value) {
var node = {};
node.value = value;
node.left = null;
node.right = null;
return node;
};
BinarySearchTree.prototype.add = function(value) {
var currentNode = this.makeNode(value);
if (!this.root) {
this.root = currentNode;
} else {
this.insert(currentNode);
}
return this;
};
BinarySearchTree.prototype.insert = function(currentNode) {
var value = currentNode.value;
var traverse = function(node) {
//if value is equal to the value of the node, ignore
//and exit function since we don't want duplicates
if (value === node.value) {
return;
} else if (value > node.value) {
if (!node.right) {
node.right = currentNode;
return;
} else
traverse(node.right);
} else if (value < node.value) {
if (!node.left) {
node.left = currentNode;
return;
} else
traverse(node.left);
}
};
traverse(this.root);
};
BinarySearchTree.prototype.contains = function(value) {
var node = this.root;
var traverse = function(node) {
if (!node) return false;
if (value === node.value) {
return true;
} else if (value > node.value) {
return traverse(node.right);
} else if (value < node.value) {
return traverse(node.left);
}
};
return traverse(node);
};
/* BREADTH FIRST TREE TRAVERSAL */
/* Breadth First Search finds all the siblings at each level
in order from left to right or from right to left. */
BinarySearchTree.prototype.breadthFirstLTR = function() {
var node = this.root;
var queue = [node];
var result = [];
while (node = queue.shift()) {
result.push(node.value);
node.left && queue.push(node.left);
node.right && queue.push(node.right);
}
return result;
};
BinarySearchTree.prototype.breadthFirstRTL = function() {
var node = this.root;
var queue = [node];
var result = [];
while (node = queue.shift()) {
result.push(node.value);
node.right && queue.push(node.right);
node.left && queue.push(node.left);
}
return result;
};
/*DEPTH FIRST TRAVERSALS*/
/* preOrder is a type of depth-first traversal that tries
togo deeper in the tree before exploring siblings. It
returns the shallowest descendants first.
1) Display the data part of root element (or current element)
2) Traverse the left subtree by recursively calling the pre-order function.
3) Traverse the right subtree by recursively calling the pre-order function. */
BinarySearchTree.prototype.preOrder = function() {
var result = [];
var node = this.root;
var traverse = function(node) {
result.push(node.value);
node.left && traverse(node.left);
node.right && traverse(node.right);
};
traverse(node);
return result;
};
/* inOrder traversal is a type of depth-first traversal
that also tries to go deeper in the tree before exploring siblings.
however, it returns the deepest descendents first
1) Traverse the left subtree by recursively calling the pre-order function.
2) Display the data part of root element (or current element)
3) Traverse the right subtree by recursively calling the pre-order function. */
BinarySearchTree.prototype.inOrder = function() {
var result = [];
var node = this.root;
var traverse = function(node) {
node.left && traverse(node.left);
result.push(node.value);
node.right && traverse(node.right);
};
traverse(node);
return result;
};
/* postOrder traversal is a type of depth-first traversal
that also tries to go deeper in the tree before exploring siblings.
however, it returns the deepest descendents first
1) Traverse the left subtree by recursively calling the pre-order function.
2) Display the data part of root element (or current element)
3) Traverse the right subtree by recursively calling the pre-order function. */
BinarySearchTree.prototype.postOrder = function() {
var result = [];
var node = this.root;
var traverse = function(node) {
node.left && traverse(node.left);
node.right && traverse(node.right);
result.push(node.value);
};
traverse(node);
return result;
};
//find the left most node to find the min value of a binary tree;
BinarySearchTree.prototype.findMin = function() {
var node = this.root;
var traverse = function(node) {
return !node.left ? node.value : traverse(node.left);
};
return traverse(node);
};
//find the right most node to find the max value of a binary tree;
BinarySearchTree.prototype.findMax = function() {
var node = this.root;
var traverse = function(node) {
return !node.right ? node.value : traverse(node.right);
};
return traverse(node);
};
BinarySearchTree.prototype.getDepth = function() {
var node = this.root;
var maxDepth = 0;
var traverse = function(node, depth) {
if (!node) return null;
if (node) {
maxDepth = depth > maxDepth ? depth : maxDepth;
traverse(node.left, depth + 1);
traverse(node.right, depth + 1);
}
};
traverse(node, 0);
return maxDepth;
};
//Can you write me a function that returns all the averages of the nodes
//at each level (or depth)?? with breadth-first traversal
BinarySearchTree.prototype.nodeAverages = function() {
var node = this.root;
var result = {};
var depthAverages = [];
var traverse = function(node, depth) {
if (!node) return null;
if (node) {
if (!result[depth])
result[depth] = [node.value];
else
result[depth].push(node.value);
}
//check to see if node is a leaf, depth stays the same if it is
//otherwise increment depth for possible right and left nodes
if (node.right || node.left) {
traverse(node.left, depth + 1);
traverse(node.right, depth + 1);
}
};
traverse(node, 0);
//get averages and breadthFirst
for (var key in result) {
var len = result[key].length;
var depthAvg = 0;
for (var i = 0; i < len; i++) {
depthAvg += result[key][i];
}
depthAverages.push(Number((depthAvg / len).toFixed(2)));
}
return depthAverages;
};
//Convert a binary search tree to a linked-list in place.
//In-order depth-first traversal.
function LinkedList() {
this.head = null;
}
BinarySearchTree.prototype.convertToLinkedList = function() {
var result = [];
var node = this.root;
if (!node) return null;
var traverse = function(node) {
node.left && traverse(node.left);
result.push(node.value);
node.right && traverse(node.right);
};
traverse(node);
var makeNode = function(value) {
var node = {};
node.value = value;
node.next = null;
return node;
};
var list = new LinkedList();
list.head = makeNode(result[0]);
var current = list.head;
for (var i = 1; i < result.length; i++) {
var currentNode = makeNode(result[i]);
current.next = currentNode;
current = current.next;
}
return list;
};
//TESTS
var bst = new BinarySearchTree();
bst.add(40).add(25).add(78).add(10).add(32);
console.log('BS1', bst);
var bst2 = new BinarySearchTree();
bst2.add(10).add(20).add(30).add(5).add(8).add(3).add(9);
console.log('BST2', bst2);
console.log('BREADTHFIRST LTR', bst2.breadthFirstLTR());
console.log('BREADTHFIRST RTL', bst2.breadthFirstRTL());
console.log('PREORDER', bst2.preOrder());
console.log('INORDER', bst2.inOrder());
console.log('POSTORDER', bst2.postOrder());
/*
BREADTHFIRST LTR [ 10, 5, 20, 3, 8, 30, 9 ]
BREADTHFIRST RTL [ 10, 20, 5, 30, 8, 3, 9 ]
PREORDER [ 10, 5, 3, 8, 9, 20, 30 ]
INORDER [ 3, 5, 8, 9, 10, 20, 30 ]
POSTORDER [ 3, 9, 8, 5, 30, 20, 10 ]
*/
var bst3 = new BinarySearchTree();
bst3.add('j').add('f').add('k').add('z').add('a').add('h').add('d');
console.log(bst3);
console.log('BREADTHFIRST LTR', bst3.breadthFirstLTR());
console.log('BREADTHFIRST RTL', bst3.breadthFirstRTL());
console.log('PREORDER', bst3.preOrder());
console.log('INORDER', bst3.inOrder());
console.log('POSTORDER', bst3.postOrder());
/*
BREADTHFIRST LTR [ 'j', 'f', 'k', 'a', 'h', 'z', 'd' ]
BREADTHFIRST RTL [ 'j', 'k', 'f', 'z', 'h', 'a', 'd' ]
PREORDER [ 'j', 'f', 'a', 'd', 'h', 'k', 'z' ]
INORDER [ 'a', 'd', 'f', 'h', 'j', 'k', 'z' ]
POSTORDER [ 'd', 'a', 'h', 'f', 'z', 'k', 'j' ]
*/
console.log(bst2.findMin()); // 3
console.log(bst2.findMax()); // 30
console.log(bst2.contains(15));
//bst2.add(55);
//bst2.add(65);
//bst3.add(75);
console.log(bst2);
console.log(bst2.getDepth()); // 3
console.log(bst2.add(7).add(50).add(80).add(98));
console.log(bst2.getDepth()); // 5
console.log(bst2.nodeAverages()); //[ 10, 12.5, 13.67, 22, 80, 98 ]
console.log(bst2.convertToLinkedList());
//[ 3, 5, 7, 8, 9, 10, 20, 30, 50, 80, 98 ]
//{ head: { value: 3, next: { value: 5, next: [Object] } } }
les arbres de recherche binaires communément connus sous le nom de BST sont un type spécial d'arbres qui sont triés dans la nature. Dans l'arbre de recherche binaire chaque noeud est plus grand que son enfant gauche et plus petit que son enfant droit. Cette fonctionnalité facilite la recherche, l'insertion et la suppression d'un noeud dans l'arborescence de recherche binaire.
Algo
//Vérifier si le nœud racine est vide ou pas
// Si oui, alors affecter nouveau nœud racine
// Si ce n'est pas que itérer. La méthode itérate vérifiera la valeur du noeud à ajouter à partir de l'enfant gauche et droit du noeud en cours de traitement.
// si la valeur du nœud à ajouter est moindre que le nœud de déplacer tho gauche de l'enfant
// Si la gauche l'enfant est vide de leur attribuer de nouvelles nœud de cette gauche nœud enfant
// else appel itération de la méthode
// SI la valeur du nœud à ajouter est supérieure à la valeur du nœud de se déplacer vers la droite de l'enfant
/ / si l'enfant droit est vide que d'assigner le nouveau noeud à ce noeud d'enfant droit
// else appel itération de la méthode
Si cela peut vous aider vous pouvez consulter l'article complet ici recherche dans L'arborescence binaire insert node Implementation en Javascript