Mise en œuvre de Gaussian Blur - comment calculer la matrice de convolution (noyau)
ma question est très proche de celle-ci: Comment est-ce que je trouble une image gaussienne sans utiliser aucune fonction gaussienne intégrée?
la réponse à cette question est très bonne, mais elle ne donne pas d'exemple de calcul d'un vrai noyau de filtre gaussien. La réponse donne un noyau arbitraire et montre comment appliquer le filtre en utilisant ce noyau mais pas comment calculer un noyau réel lui-même. J'essaie de mettre en œuvre un flou gaussien C++ ou Matlab à partir de zéro, donc j'ai besoin de savoir comment calculer le noyau à partir de zéro.
j'apprécierais que quelqu'un puisse calculer un vrai noyau de filtre gaussien en utilisant n'importe quel petit exemple de matrice d'image.
6 réponses
vous pouvez créer un noyau gaussien à partir de zéro comme indiqué dans la documentation de MATLAB fspecial
. Veuillez lire la formule de création du noyau gaussien dans la partie algorithmes de cette page et suivez le code ci-dessous. Le code est de créer une matrice m-by-n avec sigma = 1.
m = 5; n = 5;
sigma = 1;
[h1, h2] = meshgrid(-(m-1)/2:(m-1)/2, -(n-1)/2:(n-1)/2);
hg = exp(- (h1.^2+h2.^2) / (2*sigma^2));
h = hg ./ sum(hg(:));
h =
0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030
observer que cela peut être fait par le intégré fspecial
comme suit:
fspecial('gaussian', [m n], sigma)
ans =
0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030
je pense qu'il est simple de implémentez ceci dans n'importe quelle langue que vous aimez.
EDIT: Permettez-moi également d'ajouter les valeurs de h1
et h2
pour le cas d'espèce, étant donné que vous pouvez ne pas être familiers avec meshgrid
si tu code en C++.
h1 =
-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2
h2 =
-2 -2 -2 -2 -2
-1 -1 -1 -1 -1
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
c'est aussi simple que ça en a l'air:
double sigma = 1;
int W = 5;
double kernel[W][W];
double mean = W/2;
double sum = 0.0; // For accumulating the kernel values
for (int x = 0; x < W; ++x)
for (int y = 0; y < W; ++y) {
kernel[x][y] = exp( -0.5 * (pow((x-mean)/sigma, 2.0) + pow((y-mean)/sigma,2.0)) )
/ (2 * M_PI * sigma * sigma);
// Accumulate the kernel values
sum += kernel[x][y];
}
// Normalize the kernel
for (int x = 0; x < W; ++x)
for (int y = 0; y < W; ++y)
kernel[x][y] /= sum;
pour implémenter le gaussian blur vous prenez simplement la fonction gaussian function et calculez une valeur pour chacun des éléments de votre noyau.
habituellement, vous voulez assigner le poids maximum à l'élément central de votre noyau et des valeurs proches de zéro pour les éléments aux frontières du noyau. Cela implique que le noyau doit avoir une hauteur impaire (resp. largeur) pour s'assurer qu'il y a effectivement un élément central.
pour calculer les éléments réels du noyau, vous pouvez ajuster la cloche gaussienne à la grille du noyau (choisissez un arbitraire par exemple sigma = 1
et une plage arbitraire par exemple -2*sigma ... 2*sigma
) et la normaliser, S. T. les éléments se résument à un.
Pour atteindre cet objectif, si vous voulez soutenir arbitraire noyau de tailles, vous pouvez adapter le sigma à la taille du noyau.
voici un exemple de C++:
#include <cmath>
#include <vector>
#include <iostream>
#include <iomanip>
double gaussian( double x, double mu, double sigma ) {
const double a = ( x - mu ) / sigma;
return std::exp( -0.5 * a * a );
}
typedef std::vector<double> kernel_row;
typedef std::vector<kernel_row> kernel_type;
kernel_type produce2dGaussianKernel (int kernelRadius) {
double sigma = kernelRadius/2.;
kernel_type kernel2d(2*kernelRadius+1, kernel_row(2*kernelRadius+1));
double sum = 0;
// compute values
for (int row = 0; row < kernel2d.size(); row++)
for (int col = 0; col < kernel2d[row].size(); col++) {
double x = gaussian(row, kernelRadius, sigma)
* gaussian(col, kernelRadius, sigma);
kernel2d[row][col] = x;
sum += x;
}
// normalize
for (int row = 0; row < kernel2d.size(); row++)
for (int col = 0; col < kernel2d[row].size(); col++)
kernel2d[row][col] /= sum;
return kernel2d;
}
int main() {
kernel_type kernel2d = produce2dGaussianKernel(3);
std::cout << std::setprecision(5) << std::fixed;
for (int row = 0; row < kernel2d.size(); row++) {
for (int col = 0; col < kernel2d[row].size(); col++)
std::cout << kernel2d[row][col] << ' ';
std::cout << '\n';
}
}
la sortie est:
$ g++ test.cc && ./a.out
0.00134 0.00408 0.00794 0.00992 0.00794 0.00408 0.00134
0.00408 0.01238 0.02412 0.03012 0.02412 0.01238 0.00408
0.00794 0.02412 0.04698 0.05867 0.04698 0.02412 0.00794
0.00992 0.03012 0.05867 0.07327 0.05867 0.03012 0.00992
0.00794 0.02412 0.04698 0.05867 0.04698 0.02412 0.00794
0.00408 0.01238 0.02412 0.03012 0.02412 0.01238 0.00408
0.00134 0.00408 0.00794 0.00992 0.00794 0.00408 0.00134
comme simplification, vous n'avez pas besoin d'utiliser un noyau 2d. Plus facile à mettre en œuvre et aussi plus efficace à calculer est d'utiliser deux noyaux 1D orthogonaux. Ceci est possible grâce à l'associativité de ce type de convolution linéaire (séparabilité linéaire). Vous pouvez aussi vouloir voir cette section de l'article Wikipédia correspondant.
Voici la même chose en Python (dans l'espoir que quelqu'un pourrait le trouver utile):
from math import exp
def gaussian(x, mu, sigma):
return exp( -(((x-mu)/(sigma))**2)/2.0 )
#kernel_height, kernel_width = 7, 7
kernel_radius = 3 # for an 7x7 filter
sigma = kernel_radius/2. # for [-2*sigma, 2*sigma]
# compute the actual kernel elements
hkernel = [gaussian(x, kernel_radius, sigma) for x in range(2*kernel_radius+1)]
vkernel = [x for x in hkernel]
kernel2d = [[xh*xv for xh in hkernel] for xv in vkernel]
# normalize the kernel elements
kernelsum = sum([sum(row) for row in kernel2d])
kernel2d = [[x/kernelsum for x in row] for row in kernel2d]
for line in kernel2d:
print ["%.3f" % x for x in line]
produit le noyau:
['0.001', '0.004', '0.008', '0.010', '0.008', '0.004', '0.001']
['0.004', '0.012', '0.024', '0.030', '0.024', '0.012', '0.004']
['0.008', '0.024', '0.047', '0.059', '0.047', '0.024', '0.008']
['0.010', '0.030', '0.059', '0.073', '0.059', '0.030', '0.010']
['0.008', '0.024', '0.047', '0.059', '0.047', '0.024', '0.008']
['0.004', '0.012', '0.024', '0.030', '0.024', '0.012', '0.004']
['0.001', '0.004', '0.008', '0.010', '0.008', '0.004', '0.001']
flou Gaussien en python à l'aide de PIL image de la bibliothèque. Pour plus d'informations lire ce qui suit: http://blog.ivank.net/fastest-gaussian-blur.html
from PIL import Image
import math
# img = Image.open('input.jpg').convert('L')
# r = radiuss
def gauss_blur(img, r):
imgData = list(img.getdata())
bluredImg = Image.new(img.mode, img.size)
bluredImgData = list(bluredImg.getdata())
rs = int(math.ceil(r * 2.57))
for i in range(0, img.height):
for j in range(0, img.width):
val = 0
wsum = 0
for iy in range(i - rs, i + rs + 1):
for ix in range(j - rs, j + rs + 1):
x = min(img.width - 1, max(0, ix))
y = min(img.height - 1, max(0, iy))
dsq = (ix - j) * (ix - j) + (iy - i) * (iy - i)
weight = math.exp(-dsq / (2 * r * r)) / (math.pi * 2 * r * r)
val += imgData[y * img.width + x] * weight
wsum += weight
bluredImgData[i * img.width + j] = round(val / wsum)
bluredImg.putdata(bluredImgData)
return bluredImg
function kernel = gauss_kernel(m, n, sigma)
% Generating Gauss Kernel
x = -(m-1)/2 : (m-1)/2;
y = -(n-1)/2 : (n-1)/2;
for i = 1:m
for j = 1:n
xx(i,j) = x(i);
yy(i,j) = y(j);
end
end
kernel = exp(-(xx.*xx + yy.*yy)/(2*sigma*sigma));
% Normalize the kernel
kernel = kernel/sum(kernel(:));
% Corresponding function in MATLAB
% fspecial('gaussian', [m n], sigma)
// my_test.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
#include <cmath>
#include <vector>
#include <iostream>
#include <iomanip>
#include <string>
///q/implementing-gaussian-blur-how-to-calculate-convolution-matrix-kernel-21902/" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" "
};
static int countSpace(float aValue)
{
int count = 0;
int value = (int)aValue;
while (value > 9)
{
count++;
value /= 10;
}
return count;
}
int main() {
while (1)
{
char str1[80]; // window size
char str2[80]; // sigma
char str3[80]; // coefficient
int space;
int i, ch;
printf("\n-----------------------------------------------------------------------------\n");
printf("Start generate Gaussian matrix\n");
printf("-----------------------------------------------------------------------------\n");
// input window size
printf("\nPlease enter window size (from 3 to 10) It should be odd (ksize/mod 2 = 1 ) and positive: Exit enter q \n");
for (i = 0; (i < 80) && ((ch = getchar()) != EOF)
&& (ch != '\n'); i++)
{
str1[i] = (char)ch;
}
// Terminate string with a null character
str1[i] = '"151900920"';
if (str1[0] == 'q')
{
break;
}
int input1 = atoi(str1);
int window_size = input1 / 2;
printf("Input window_size was: %d\n", input1);
// input sigma
printf("Please enter sigma. Use default press Enter . Exit enter q \n");
str2[0] = '0';
for (i = 0; (i < 80) && ((ch = getchar()) != EOF)
&& (ch != '\n'); i++)
{
str2[i] = (char)ch;
}
// Terminate string with a null character
str2[i] = '"151900920"';
if (str2[0] == 'q')
{
break;
}
float input2 = atof(str2);
float sigma;
if (input2 == 0)
{
// Open-CV sigma � Gaussian standard deviation. If it is non-positive, it is computed from ksize as sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8 .
sigma = 0.3*((input1 - 1)*0.5 - 1) + 0.8;
}
else
{
sigma = input2;
}
printf("Input sigma was: %f\n", sigma);
// input Coefficient K
printf("Please enter Coefficient K. Use default press Enter . Exit enter q \n");
str3[0] = '0';
for (i = 0; (i < 80) && ((ch = getchar()) != EOF)
&& (ch != '\n'); i++)
{
str3[i] = (char)ch;
}
// Terminate string with a null character
str3[i] = '"151900920"';
if (str3[0] == 'q')
{
break;
}
int input3 = atoi(str3);
int cK;
if (input3 == 0)
{
cK = 1;
}
else
{
cK = input3;
}
float sum_f = 0;
float temp_f;
int sum = 0;
int temp;
printf("Input Coefficient K was: %d\n", cK);
printf("\nwindow size=%d | Sigma = %f Coefficient K = %d\n\n\n", input1, sigma, cK);
kernel_type kernel2d = produce2dGaussianKernel(window_size, sigma);
std::cout << std::setprecision(input1) << std::fixed;
for (int row = 0; row < kernel2d.size(); row++) {
for (int col = 0; col < kernel2d[row].size(); col++)
{
temp_f = cK* kernel2d[row][col];
sum_f += temp_f;
space = countSpace(temp_f);
std::cout << gMatChar[space] << temp_f << ' ';
}
std::cout << '\n';
}
printf("\n Sum array = %f | delta = %f", sum_f, sum_f - cK);
// rounding
printf("\nRecommend use round(): window size=%d | Sigma = %f Coefficient K = %d\n\n\n", input1, sigma, cK);
sum = 0;
std::cout << std::setprecision(0) << std::fixed;
for (int row = 0; row < kernel2d.size(); row++) {
for (int col = 0; col < kernel2d[row].size(); col++)
{
temp = round(cK* kernel2d[row][col]);
sum += temp;
space = countSpace((float)temp);
std::cout << gMatChar[space] << temp << ' ';
}
std::cout << '\n';
}
printf("\n Sum array = %d | delta = %d", sum, sum - cK);
// recommented
sum_f = 0;
int cK_d = 1 / kernel2d[0][0];
cK_d = cK_d / 2 * 2;
printf("\nRecommend: window size=%d | Sigma = %f Coefficient K = %d\n\n\n", input1, sigma, cK_d);
std::cout << std::setprecision(input1) << std::fixed;
for (int row = 0; row < kernel2d.size(); row++) {
for (int col = 0; col < kernel2d[row].size(); col++)
{
temp_f = cK_d* kernel2d[row][col];
sum_f += temp_f;
space = countSpace(temp_f);
std::cout << gMatChar[space] << temp_f << ' ';
}
std::cout << '\n';
}
printf("\n Sum array = %f | delta = %f", sum_f, sum_f - cK_d);
// rounding
printf("\nRecommend use round(): window size=%d | Sigma = %f Coefficient K = %d\n\n\n", input1, sigma, cK_d);
sum = 0;
std::cout << std::setprecision(0) << std::fixed;
for (int row = 0; row < kernel2d.size(); row++) {
for (int col = 0; col < kernel2d[row].size(); col++)
{
temp = round(cK_d* kernel2d[row][col]);
sum += temp;
space = countSpace((float)temp);
std::cout << gMatChar[space] << temp << ' ';
}
std::cout << '\n';
}
printf("\n Sum array = %d | delta = %d", sum, sum - cK_d);
}
}