Comment implémenter un arbre de recherche binaire en Python?

c'est Ce que j'ai obtenu jusqu'à présent, mais il ne fonctionne pas:

class Node:
    rChild,lChild,data = None,None,None

    def __init__(self,key):
        self.rChild = None
        self.lChild = None
        self.data = key

class Tree:
    root,size = None,0
    def __init__(self):
        self.root = None
        self.size = 0

    def insert(self,node,someNumber):
        if node is None:
            node = Node(someNumber)
        else:
            if node.data > someNumber:
                self.insert(node.rchild,someNumber)
            else:
                self.insert(node.rchild, someNumber)
        return

def main():
    t = Tree()
    t.root = Node(4)
    t.root.rchild = Node(5)
    print t.root.data #this works
    print t.root.rchild.data #this works too
    t = Tree()
    t.insert(t.root,4)
    t.insert(t.root,5)
    print t.root.data #this fails
    print t.root.rchild.data #this fails too

if __name__ == '__main__':
     main()
28

14 réponses

voici un exemple d'insertion binaire:

class Node:
    def __init__(self, val):
        self.l_child = None
        self.r_child = None
        self.data = val

def binary_insert(root, node):
    if root is None:
        root = node
    else:
        if root.data > node.data:
            if root.l_child is None:
                root.l_child = node
            else:
                binary_insert(root.l_child, node)
        else:
            if root.r_child is None:
                root.r_child = node
            else:
                binary_insert(root.r_child, node)

def in_order_print(root):
    if not root:
        return
    in_order_print(root.l_child)
    print root.data
    in_order_print(root.r_child)

def pre_order_print(root):
    if not root:
        return        
    print root.data
    pre_order_print(root.l_child)
    pre_order_print(root.r_child)    

r = Node(3)
binary_insert(r, Node(7))
binary_insert(r, Node(1))
binary_insert(r, Node(5))

     3
    / \
   1   7
      /
     5

print "in order:"
in_order_print(r)

print "pre order"
pre_order_print(r)

in order:
1
3
5
7
pre order
3
1
7
5
49
répondu DTing 2015-09-10 19:54:10
class Node: 
    rChild,lChild,data = None,None,None

C'est faux - il rend vos variables variables de classe - c'est-à-dire que chaque instance D'un noeud utilise les mêmes valeurs (changer d'origine d'un noeud le change pour tous les noeuds!). Ce n'est clairement pas ce que vous voulez, essayez

class Node: 
    def __init__(self, key):
        self.rChild = None
        self.lChild = None
        self.data = key

maintenant, chaque nœud a son propre ensemble de variables. La même chose s'applique à votre définition de l'Arborescence,

class Tree:
    root,size = None,0    # <- lose this line!
    def __init__(self):
        self.root = None
        self.size = 0

de plus, chaque classe doit être une classe" new-style "dérivée de la classe" object " et doit être enchaînée vers objet.__ init__():

class Node(object): 
    def __init__(self, data, rChild=None, lChild=None):
        super(Node,self).__init__()
        self.data   = data
        self.rChild = rChild
        self.lChild = lChild

class Tree(object):
    def __init__(self):
        super(Tree,self).__init__()
        self.root = None
        self.size = 0

en outre, main () est indenté trop loin - comme montré, c'est une méthode D'arbre qui n'est pas acceptable parce qu'elle n'accepte pas un auto argument.

en outre, vous modifiez directement les données de l'objet (t.root = Node(4)) quelle sorte de détruit l'encapsulation (le point entier d'avoir des classes en premier lieu); vous devriez faire quelque chose de plus comme

def main():
    t = Tree()
    t.add(4)    # <- let the tree create a data Node and insert it
    t.add(5)
10
répondu Hugh Bothwell 2011-03-26 19:33:49
class BST:
    def __init__(self, val=None):
        self.left = None
        self.right = None
        self.val = val

    def __str__(self):
        return "[%s, %s, %s]" % (self.left, str(self.val), self.right)

    def isEmpty(self):
        return self.left == self.right == self.val == None

    def insert(self, val):
        if self.isEmpty():
            self.val = val
        elif val < self.val:
            if self.left is None:
                self.left = BST(val)
            else:
                self.left.insert(val)
        else:
            if self.right is None:
                self.right = BST(val)
            else:
                self.right.insert(val)

a = BST(1)
a.insert(2)
a.insert(3)
a.insert(0)
print a
7
répondu Aram Kocharyan 2012-08-15 02:31:40

L'Op Tree.insert la méthode se qualifie pour le prix" grossier Misnomer of the Week " -- il n'insère rien. Il crée un noeud qui n'est attaché à aucun autre noeud (pas qu'il y ait des noeuds pour l'attacher) et puis le noeud créé est détruit quand la méthode retourne.

>>> class Foo(object):
...    bar = None
...
>>> a = Foo()
>>> b = Foo()
>>> a.bar
>>> a.bar = 42
>>> b.bar
>>> b.bar = 666
>>> a.bar
42
>>> b.bar
666
>>>
5
répondu John Machin 2011-03-26 19:14:27
class Node:
    rChild,lChild,parent,data = None,None,None,0    

def __init__(self,key):
    self.rChild = None
    self.lChild = None
    self.parent = None
    self.data = key 

class Tree:
    root,size = None,0
    def __init__(self):
        self.root = None
        self.size = 0
    def insert(self,someNumber):
        self.size = self.size+1
        if self.root is None:
            self.root = Node(someNumber)
        else:
            self.insertWithNode(self.root, someNumber)    

    def insertWithNode(self,node,someNumber):
        if node.lChild is None and node.rChild is None:#external node
            if someNumber > node.data:
                newNode = Node(someNumber)
                node.rChild = newNode
                newNode.parent = node
            else:
                newNode = Node(someNumber)
                node.lChild = newNode
                newNode.parent = node
        else: #not external
            if someNumber > node.data:
                if node.rChild is not None:
                    self.insertWithNode(node.rChild, someNumber)
                else: #if empty node
                    newNode = Node(someNumber)
                    node.rChild = newNode
                    newNode.parent = node 
            else:
                if node.lChild is not None:
                    self.insertWithNode(node.lChild, someNumber)
                else:
                    newNode = Node(someNumber)
                    node.lChild = newNode
                    newNode.parent = node                    

    def printTree(self,someNode):
        if someNode is None:
            pass
        else:
            self.printTree(someNode.lChild)
            print someNode.data
            self.printTree(someNode.rChild)

def main():  
    t = Tree()
    t.insert(5)  
    t.insert(3)
    t.insert(7)
    t.insert(4)
    t.insert(2)
    t.insert(1)
    t.insert(6)
    t.printTree(t.root)

if __name__ == '__main__':
    main()

ma solution.

5
répondu chochim 2011-03-26 20:06:20

- je trouver les solutions un peu maladroit sur l' insert partie. Vous pouviez retourner l' root référence et de simplifier un peu:

def binary_insert(root, node):
    if root is None:
        return node
    if root.data > node.data:
        root.l_child = binary_insert(root.l_child, node)
    else:
        root.r_child = binary_insert(root.r_child, node)
    return root
2
répondu jlhonora 2014-09-23 23:09:46

Juste quelque chose pour vous aider à démarrer.

(simple idée d') arbre binaire de recherche serait très probablement mettre en python selon les lignes:

def search(node, key):
    if node is None: return None  # key not found
    if key< node.key: return search(node.left, key)
    elif key> node.key: return search(node.right, key)
    else: return node.value  # found key

Maintenant vous avez juste besoin d'implémenter l'échafaudage (création d'arbre et inserts de valeur) et vous avez terminé.

1
répondu eat 2011-03-26 19:29:23

un autre BST DE Python avec la touche sort (défaut de valeur)

LEFT = 0
RIGHT = 1
VALUE = 2
SORT_KEY = -1

class BinarySearchTree(object):

    def __init__(self, sort_key=None):
        self._root = []  
        self._sort_key = sort_key
        self._len = 0  

def insert(self, val):
    if self._sort_key is None:
        sort_key = val // if no sort key, sort key is value
    else:
        sort_key = self._sort_key(val)

    node = self._root
    while node:
        if sort_key < node[_SORT_KEY]:
            node = node[LEFT]
        else:
            node = node[RIGHT]

    if sort_key is val:
        node[:] = [[], [], val]
    else:
        node[:] = [[], [], val, sort_key]
    self._len += 1

def minimum(self):
    return self._extreme_node(LEFT)[VALUE]

def maximum(self):
    return self._extreme_node(RIGHT)[VALUE]

def find(self, sort_key):
    return self._find(sort_key)[VALUE]

def _extreme_node(self, side):
    if not self._root:
        raise IndexError('Empty')
    node = self._root
    while node[side]:
        node = node[side]
    return node

def _find(self, sort_key):
    node = self._root
    while node:
        node_key = node[SORT_KEY]
        if sort_key < node_key:
            node = node[LEFT]
        elif sort_key > node_key:
            node = node[RIGHT]
        else:
            return node
    raise KeyError("%r not found" % sort_key)
1
répondu octoback 2013-04-29 10:43:40
    class BTreeNode(object):
        def __init__(self, data):
            self.data = data
            self.rChild = None
            self.lChild = None

    def __str__(self):
        return (self.lChild.__str__() + '<-' if self.lChild != None else '') + self.data.__str__() + ('->' + self.rChild.__str__() if self.rChild != None else '')

    def insert(self, btreeNode):
        if self.data > btreeNode.data: #insert left
            if self.lChild == None:
                self.lChild = btreeNode
            else:
                self.lChild.insert(btreeNode)
        else: #insert right
            if self.rChild == None:
                self.rChild = btreeNode
            else:
                self.rChild.insert(btreeNode)


def main():
    btreeRoot = BTreeNode(5)
    print 'inserted %s:' %5, btreeRoot

    btreeRoot.insert(BTreeNode(7))
    print 'inserted %s:' %7, btreeRoot

    btreeRoot.insert(BTreeNode(3))
    print 'inserted %s:' %3, btreeRoot

    btreeRoot.insert(BTreeNode(1))
    print 'inserted %s:' %1, btreeRoot

    btreeRoot.insert(BTreeNode(2))
    print 'inserted %s:' %2, btreeRoot

    btreeRoot.insert(BTreeNode(4))
    print 'inserted %s:' %4, btreeRoot

    btreeRoot.insert(BTreeNode(6))
    print 'inserted %s:' %6, btreeRoot

la sortie du main () ci-dessus est:

inserted 5: 5
inserted 7: 5->7
inserted 3: 3<-5->7
inserted 1: 1<-3<-5->7
inserted 2: 1->2<-3<-5->7
inserted 4: 1->2<-3->4<-5->7
inserted 6: 1->2<-3->4<-5->6<-7
1
répondu Pejvan 2013-09-04 02:33:15

facile à mettre en œuvre un BST à l'aide de deux classes, 1. Noeud et 2. Arbre La classe Tree sera juste pour l'interface utilisateur, et les méthodes actuelles seront implémentées dans la classe Node.

class Node():

    def __init__(self,val):
        self.value = val
        self.left = None
        self.right = None


    def _insert(self,data):
        if data == self.value:
            return False
        elif data < self.value:
            if self.left:
                return self.left._insert(data)
            else:
                self.left = Node(data)
                return True
        else:
            if self.right:
                return self.right._insert(data)
            else:
                self.right = Node(data)
                return True

    def _inorder(self):
        if self:
            if self.left:
                self.left._inorder()
            print(self.value)
            if self.right:
                self.right._inorder()



class Tree():

    def __init__(self):
        self.root = None

    def insert(self,data):
        if self.root:
            return self.root._insert(data)
        else:
            self.root = Node(data)
            return True
    def inorder(self):
        if self.root is not None:
            return self.root._inorder()
        else:
            return False




if __name__=="__main__":
    a = Tree()
    a.insert(16)
    a.insert(8)
    a.insert(24)
    a.insert(6)
    a.insert(12)
    a.insert(19)
    a.insert(29)
    a.inorder()

fonction Inorder pour vérifier si la BST est correctement implémentée.

1
répondu nirav bharadiya 2017-07-06 08:37:06

le code suivant est basique sur la réponse de @DTing et ce que j'apprends de la classe, qui utilise une boucle while à insérer (indiqué dans le code).

class Node:
    def __init__(self, val):
        self.l_child = None
        self.r_child = None
        self.data = val


def binary_insert(root, node):
    y = None
    x = root
    z = node
    #while loop here
    while x is not None:
        y = x
        if z.data < x.data:
            x = x.l_child
        else:
            x = x.r_child
    z.parent = y
    if y == None:
        root = z
    elif z.data < y.data:
        y.l_child = z
    else:
        y.r_child = z


def in_order_print(root):
    if not root:
        return
    in_order_print(root.l_child)
    print(root.data)
    in_order_print(root.r_child)


r = Node(3)
binary_insert(r, Node(7))
binary_insert(r, Node(1))
binary_insert(r, Node(5))

in_order_print(r)
0
répondu Liam 2016-04-08 10:19:24

Voici une solution qui fonctionne.

class BST:
    def __init__(self,data):
        self.root = data
        self.left = None
        self.right = None

    def insert(self,data):
        if self.root == None:
            self.root = BST(data)
        elif data > self.root:
            if self.right == None:
                self.right = BST(data)
            else:
                self.right.insert(data)
        elif data < self.root:
            if self.left == None:
                self.left = BST(data)
            else:
                self.left.insert(data)

    def inordertraversal(self):
        if self.left != None:
            self.left.inordertraversal()
        print (self.root),
        if self.right != None:
            self.right.inordertraversal()

t = BST(4)
t.insert(1)
t.insert(7)
t.insert(3)
t.insert(6)
t.insert(2)
t.insert(5)
t.inordertraversal()
0
répondu Sudhir 2017-04-24 19:22:50

la réponse acceptée néglige de définir un attribut parent pour chaque noeud inséré, sans lequel on ne peut pas implémenter un successor méthode qui trouve le successeur dans un arbre en ordre O ( h), où h est la hauteur de l'arbre (par opposition à l' O ( n) le temps nécessaire pour la marche).

Voici une implémentation basée sur le pseudo-code donné dans Cormen et al., Introduction à Les algorithmes, y compris l'attribution d'un parent l'attribut et un successor méthode:

class Node(object):
    def __init__(self, key):
        self.key = key
        self.left = None
        self.right = None
        self.parent = None


class Tree(object):
    def __init__(self, root=None):
        self.root = root

    def insert(self, z):
        y = None
        x = self.root
        while x is not None:
            y = x
            if z.key < x.key:
                x = x.left
            else:
                x = x.right
        z.parent = y
        if y is None:
            self.root = z       # Tree was empty
        elif z.key < y.key:
            y.left = z
        else:
            y.right = z

    @staticmethod
    def minimum(x):
        while x.left is not None:
            x = x.left
        return x

    @staticmethod
    def successor(x):
        if x.right is not None:
            return Tree.minimum(x.right)
        y = x.parent
        while y is not None and x == y.right:
            x = y
            y = y.parent
        return y

Voici quelques tests pour montrer que l'arbre se comporte comme prévu pour l'exemple donné par DTing:

import pytest

@pytest.fixture
def tree():
    t = Tree()
    t.insert(Node(3))
    t.insert(Node(1))
    t.insert(Node(7))
    t.insert(Node(5))
    return t

def test_tree_insert(tree):
    assert tree.root.key == 3
    assert tree.root.left.key == 1
    assert tree.root.right.key == 7
    assert tree.root.right.left.key == 5

def test_tree_successor(tree):
    assert Tree.successor(tree.root.left).key == 3
    assert Tree.successor(tree.root.right.left).key == 7

if __name__ == "__main__":
    pytest.main([__file__])
0
répondu Kurt Peek 2017-08-25 10:42:52

ici est un exemple d'implémentation si cela aide.

-1
répondu Harisankar Krishna Swamy 2015-11-10 15:12:52