Comment implémenter un arbre de recherche binaire en Python?
c'est Ce que j'ai obtenu jusqu'à présent, mais il ne fonctionne pas:
class Node:
rChild,lChild,data = None,None,None
def __init__(self,key):
self.rChild = None
self.lChild = None
self.data = key
class Tree:
root,size = None,0
def __init__(self):
self.root = None
self.size = 0
def insert(self,node,someNumber):
if node is None:
node = Node(someNumber)
else:
if node.data > someNumber:
self.insert(node.rchild,someNumber)
else:
self.insert(node.rchild, someNumber)
return
def main():
t = Tree()
t.root = Node(4)
t.root.rchild = Node(5)
print t.root.data #this works
print t.root.rchild.data #this works too
t = Tree()
t.insert(t.root,4)
t.insert(t.root,5)
print t.root.data #this fails
print t.root.rchild.data #this fails too
if __name__ == '__main__':
main()
14 réponses
voici un exemple d'insertion binaire:
class Node:
def __init__(self, val):
self.l_child = None
self.r_child = None
self.data = val
def binary_insert(root, node):
if root is None:
root = node
else:
if root.data > node.data:
if root.l_child is None:
root.l_child = node
else:
binary_insert(root.l_child, node)
else:
if root.r_child is None:
root.r_child = node
else:
binary_insert(root.r_child, node)
def in_order_print(root):
if not root:
return
in_order_print(root.l_child)
print root.data
in_order_print(root.r_child)
def pre_order_print(root):
if not root:
return
print root.data
pre_order_print(root.l_child)
pre_order_print(root.r_child)
r = Node(3)
binary_insert(r, Node(7))
binary_insert(r, Node(1))
binary_insert(r, Node(5))
3
/ \
1 7
/
5
print "in order:"
in_order_print(r)
print "pre order"
pre_order_print(r)
in order:
1
3
5
7
pre order
3
1
7
5
class Node:
rChild,lChild,data = None,None,None
C'est faux - il rend vos variables variables de classe - c'est-à-dire que chaque instance D'un noeud utilise les mêmes valeurs (changer d'origine d'un noeud le change pour tous les noeuds!). Ce n'est clairement pas ce que vous voulez, essayez
class Node:
def __init__(self, key):
self.rChild = None
self.lChild = None
self.data = key
maintenant, chaque nœud a son propre ensemble de variables. La même chose s'applique à votre définition de l'Arborescence,
class Tree:
root,size = None,0 # <- lose this line!
def __init__(self):
self.root = None
self.size = 0
de plus, chaque classe doit être une classe" new-style "dérivée de la classe" object " et doit être enchaînée vers objet.__ init__():
class Node(object):
def __init__(self, data, rChild=None, lChild=None):
super(Node,self).__init__()
self.data = data
self.rChild = rChild
self.lChild = lChild
class Tree(object):
def __init__(self):
super(Tree,self).__init__()
self.root = None
self.size = 0
en outre, main () est indenté trop loin - comme montré, c'est une méthode D'arbre qui n'est pas acceptable parce qu'elle n'accepte pas un auto argument.
en outre, vous modifiez directement les données de l'objet (t.root = Node(4)
) quelle sorte de détruit l'encapsulation (le point entier d'avoir des classes en premier lieu); vous devriez faire quelque chose de plus comme
def main():
t = Tree()
t.add(4) # <- let the tree create a data Node and insert it
t.add(5)
class BST:
def __init__(self, val=None):
self.left = None
self.right = None
self.val = val
def __str__(self):
return "[%s, %s, %s]" % (self.left, str(self.val), self.right)
def isEmpty(self):
return self.left == self.right == self.val == None
def insert(self, val):
if self.isEmpty():
self.val = val
elif val < self.val:
if self.left is None:
self.left = BST(val)
else:
self.left.insert(val)
else:
if self.right is None:
self.right = BST(val)
else:
self.right.insert(val)
a = BST(1)
a.insert(2)
a.insert(3)
a.insert(0)
print a
L'Op Tree.insert
la méthode se qualifie pour le prix" grossier Misnomer of the Week " -- il n'insère rien. Il crée un noeud qui n'est attaché à aucun autre noeud (pas qu'il y ait des noeuds pour l'attacher) et puis le noeud créé est détruit quand la méthode retourne.
>>> class Foo(object):
... bar = None
...
>>> a = Foo()
>>> b = Foo()
>>> a.bar
>>> a.bar = 42
>>> b.bar
>>> b.bar = 666
>>> a.bar
42
>>> b.bar
666
>>>
class Node:
rChild,lChild,parent,data = None,None,None,0
def __init__(self,key):
self.rChild = None
self.lChild = None
self.parent = None
self.data = key
class Tree:
root,size = None,0
def __init__(self):
self.root = None
self.size = 0
def insert(self,someNumber):
self.size = self.size+1
if self.root is None:
self.root = Node(someNumber)
else:
self.insertWithNode(self.root, someNumber)
def insertWithNode(self,node,someNumber):
if node.lChild is None and node.rChild is None:#external node
if someNumber > node.data:
newNode = Node(someNumber)
node.rChild = newNode
newNode.parent = node
else:
newNode = Node(someNumber)
node.lChild = newNode
newNode.parent = node
else: #not external
if someNumber > node.data:
if node.rChild is not None:
self.insertWithNode(node.rChild, someNumber)
else: #if empty node
newNode = Node(someNumber)
node.rChild = newNode
newNode.parent = node
else:
if node.lChild is not None:
self.insertWithNode(node.lChild, someNumber)
else:
newNode = Node(someNumber)
node.lChild = newNode
newNode.parent = node
def printTree(self,someNode):
if someNode is None:
pass
else:
self.printTree(someNode.lChild)
print someNode.data
self.printTree(someNode.rChild)
def main():
t = Tree()
t.insert(5)
t.insert(3)
t.insert(7)
t.insert(4)
t.insert(2)
t.insert(1)
t.insert(6)
t.printTree(t.root)
if __name__ == '__main__':
main()
ma solution.
- je trouver les solutions un peu maladroit sur l' insert
partie. Vous pouviez retourner l' root
référence et de simplifier un peu:
def binary_insert(root, node):
if root is None:
return node
if root.data > node.data:
root.l_child = binary_insert(root.l_child, node)
else:
root.r_child = binary_insert(root.r_child, node)
return root
Juste quelque chose pour vous aider à démarrer.
(simple idée d') arbre binaire de recherche serait très probablement mettre en python selon les lignes:
def search(node, key):
if node is None: return None # key not found
if key< node.key: return search(node.left, key)
elif key> node.key: return search(node.right, key)
else: return node.value # found key
Maintenant vous avez juste besoin d'implémenter l'échafaudage (création d'arbre et inserts de valeur) et vous avez terminé.
un autre BST DE Python avec la touche sort (défaut de valeur)
LEFT = 0
RIGHT = 1
VALUE = 2
SORT_KEY = -1
class BinarySearchTree(object):
def __init__(self, sort_key=None):
self._root = []
self._sort_key = sort_key
self._len = 0
def insert(self, val):
if self._sort_key is None:
sort_key = val // if no sort key, sort key is value
else:
sort_key = self._sort_key(val)
node = self._root
while node:
if sort_key < node[_SORT_KEY]:
node = node[LEFT]
else:
node = node[RIGHT]
if sort_key is val:
node[:] = [[], [], val]
else:
node[:] = [[], [], val, sort_key]
self._len += 1
def minimum(self):
return self._extreme_node(LEFT)[VALUE]
def maximum(self):
return self._extreme_node(RIGHT)[VALUE]
def find(self, sort_key):
return self._find(sort_key)[VALUE]
def _extreme_node(self, side):
if not self._root:
raise IndexError('Empty')
node = self._root
while node[side]:
node = node[side]
return node
def _find(self, sort_key):
node = self._root
while node:
node_key = node[SORT_KEY]
if sort_key < node_key:
node = node[LEFT]
elif sort_key > node_key:
node = node[RIGHT]
else:
return node
raise KeyError("%r not found" % sort_key)
class BTreeNode(object):
def __init__(self, data):
self.data = data
self.rChild = None
self.lChild = None
def __str__(self):
return (self.lChild.__str__() + '<-' if self.lChild != None else '') + self.data.__str__() + ('->' + self.rChild.__str__() if self.rChild != None else '')
def insert(self, btreeNode):
if self.data > btreeNode.data: #insert left
if self.lChild == None:
self.lChild = btreeNode
else:
self.lChild.insert(btreeNode)
else: #insert right
if self.rChild == None:
self.rChild = btreeNode
else:
self.rChild.insert(btreeNode)
def main():
btreeRoot = BTreeNode(5)
print 'inserted %s:' %5, btreeRoot
btreeRoot.insert(BTreeNode(7))
print 'inserted %s:' %7, btreeRoot
btreeRoot.insert(BTreeNode(3))
print 'inserted %s:' %3, btreeRoot
btreeRoot.insert(BTreeNode(1))
print 'inserted %s:' %1, btreeRoot
btreeRoot.insert(BTreeNode(2))
print 'inserted %s:' %2, btreeRoot
btreeRoot.insert(BTreeNode(4))
print 'inserted %s:' %4, btreeRoot
btreeRoot.insert(BTreeNode(6))
print 'inserted %s:' %6, btreeRoot
la sortie du main () ci-dessus est:
inserted 5: 5
inserted 7: 5->7
inserted 3: 3<-5->7
inserted 1: 1<-3<-5->7
inserted 2: 1->2<-3<-5->7
inserted 4: 1->2<-3->4<-5->7
inserted 6: 1->2<-3->4<-5->6<-7
facile à mettre en œuvre un BST à l'aide de deux classes, 1. Noeud et 2. Arbre La classe Tree sera juste pour l'interface utilisateur, et les méthodes actuelles seront implémentées dans la classe Node.
class Node():
def __init__(self,val):
self.value = val
self.left = None
self.right = None
def _insert(self,data):
if data == self.value:
return False
elif data < self.value:
if self.left:
return self.left._insert(data)
else:
self.left = Node(data)
return True
else:
if self.right:
return self.right._insert(data)
else:
self.right = Node(data)
return True
def _inorder(self):
if self:
if self.left:
self.left._inorder()
print(self.value)
if self.right:
self.right._inorder()
class Tree():
def __init__(self):
self.root = None
def insert(self,data):
if self.root:
return self.root._insert(data)
else:
self.root = Node(data)
return True
def inorder(self):
if self.root is not None:
return self.root._inorder()
else:
return False
if __name__=="__main__":
a = Tree()
a.insert(16)
a.insert(8)
a.insert(24)
a.insert(6)
a.insert(12)
a.insert(19)
a.insert(29)
a.inorder()
fonction Inorder pour vérifier si la BST est correctement implémentée.
le code suivant est basique sur la réponse de @DTing et ce que j'apprends de la classe, qui utilise une boucle while à insérer (indiqué dans le code).
class Node:
def __init__(self, val):
self.l_child = None
self.r_child = None
self.data = val
def binary_insert(root, node):
y = None
x = root
z = node
#while loop here
while x is not None:
y = x
if z.data < x.data:
x = x.l_child
else:
x = x.r_child
z.parent = y
if y == None:
root = z
elif z.data < y.data:
y.l_child = z
else:
y.r_child = z
def in_order_print(root):
if not root:
return
in_order_print(root.l_child)
print(root.data)
in_order_print(root.r_child)
r = Node(3)
binary_insert(r, Node(7))
binary_insert(r, Node(1))
binary_insert(r, Node(5))
in_order_print(r)
Voici une solution qui fonctionne.
class BST:
def __init__(self,data):
self.root = data
self.left = None
self.right = None
def insert(self,data):
if self.root == None:
self.root = BST(data)
elif data > self.root:
if self.right == None:
self.right = BST(data)
else:
self.right.insert(data)
elif data < self.root:
if self.left == None:
self.left = BST(data)
else:
self.left.insert(data)
def inordertraversal(self):
if self.left != None:
self.left.inordertraversal()
print (self.root),
if self.right != None:
self.right.inordertraversal()
t = BST(4)
t.insert(1)
t.insert(7)
t.insert(3)
t.insert(6)
t.insert(2)
t.insert(5)
t.inordertraversal()
la réponse acceptée néglige de définir un attribut parent pour chaque noeud inséré, sans lequel on ne peut pas implémenter un successor
méthode qui trouve le successeur dans un arbre en ordre O ( h), où h est la hauteur de l'arbre (par opposition à l' O ( n) le temps nécessaire pour la marche).
Voici une implémentation basée sur le pseudo-code donné dans Cormen et al., Introduction à Les algorithmes, y compris l'attribution d'un parent
l'attribut et un successor
méthode:
class Node(object):
def __init__(self, key):
self.key = key
self.left = None
self.right = None
self.parent = None
class Tree(object):
def __init__(self, root=None):
self.root = root
def insert(self, z):
y = None
x = self.root
while x is not None:
y = x
if z.key < x.key:
x = x.left
else:
x = x.right
z.parent = y
if y is None:
self.root = z # Tree was empty
elif z.key < y.key:
y.left = z
else:
y.right = z
@staticmethod
def minimum(x):
while x.left is not None:
x = x.left
return x
@staticmethod
def successor(x):
if x.right is not None:
return Tree.minimum(x.right)
y = x.parent
while y is not None and x == y.right:
x = y
y = y.parent
return y
Voici quelques tests pour montrer que l'arbre se comporte comme prévu pour l'exemple donné par DTing:
import pytest
@pytest.fixture
def tree():
t = Tree()
t.insert(Node(3))
t.insert(Node(1))
t.insert(Node(7))
t.insert(Node(5))
return t
def test_tree_insert(tree):
assert tree.root.key == 3
assert tree.root.left.key == 1
assert tree.root.right.key == 7
assert tree.root.right.left.key == 5
def test_tree_successor(tree):
assert Tree.successor(tree.root.left).key == 3
assert Tree.successor(tree.root.right.left).key == 7
if __name__ == "__main__":
pytest.main([__file__])
ici est un exemple d'implémentation si cela aide.