Comment ajouter du bruit (Gaussian / sel et poivre etc) à l'image en Python avec OpenCV [dupliquer]
Cette question a déjà une réponse ici:
- bruit impulsif, gaussien et salé et poivré avec OpenCV 6 réponses
je me demande s'il existe des fonctions en Python avec OpenCV ou toute autre bibliothèque de traitement d'image python qui ajoute du bruit gaussien ou salé et poivré à une image? Par exemple, dans MATLAB il existe fonctions simples qui font le même travail.
ou, comment ajouter du bruit à une image en utilisant Python avec OpenCV?
3 réponses
la fonction ajoute le bruit gaussien, salé-poivré, poisson et moucheté dans une image
Parameters
----------
image : ndarray
Input image data. Will be converted to float.
mode : str
One of the following strings, selecting the type of noise to add:
'gauss' Gaussian-distributed additive noise.
'poisson' Poisson-distributed noise generated from the data.
's&p' Replaces random pixels with 0 or 1.
'speckle' Multiplicative noise using out = image + n*image,where
n is uniform noise with specified mean & variance.
import numpy as np
import os
import cv2
def noisy(noise_typ,image):
if noise_typ == "gauss":
row,col,ch= image.shape
mean = 0
var = 0.1
sigma = var**0.5
gauss = np.random.normal(mean,sigma,(row,col,ch))
gauss = gauss.reshape(row,col,ch)
noisy = image + gauss
return noisy
elif noise_typ == "s&p":
row,col,ch = image.shape
s_vs_p = 0.5
amount = 0.004
out = np.copy(image)
# Salt mode
num_salt = np.ceil(amount * image.size * s_vs_p)
coords = [np.random.randint(0, i - 1, int(num_salt))
for i in image.shape]
out[coords] = 1
# Pepper mode
num_pepper = np.ceil(amount* image.size * (1. - s_vs_p))
coords = [np.random.randint(0, i - 1, int(num_pepper))
for i in image.shape]
out[coords] = 0
return out
elif noise_typ == "poisson":
vals = len(np.unique(image))
vals = 2 ** np.ceil(np.log2(vals))
noisy = np.random.poisson(image * vals) / float(vals)
return noisy
elif noise_typ =="speckle":
row,col,ch = image.shape
gauss = np.random.randn(row,col,ch)
gauss = gauss.reshape(row,col,ch)
noisy = image + image * gauss
return noisy
Je ne sais pas s'il y a une méthode dans L'API Python.Mais vous pouvez utiliser ce code simple pour ajouter du sel et du poivre à une image.
import numpy as np
import random
import cv2
def sp_noise(image,prob):
'''
Add salt and pepper noise to image
prob: Probability of the noise
'''
output = np.zeros(image.shape,np.uint8)
thres = 1 - prob
for i in range(image.shape[0]):
for j in range(image.shape[1]):
rdn = random.random()
if rdn < prob:
output[i][j] = 0
elif rdn > thres:
output[i][j] = 255
else:
output[i][j] = image[i][j]
return output
image = cv2.imread('image.jpg',0) # Only for grayscale image
noise_img = sp_noise(image,0.05)
cv2.imwrite('sp_noise.jpg', noise_img)
il suffit de regarder cv2.randu () ou cv.randn(), tout est déjà assez similaire à matlab, je suppose.
nous allons jouer un peu ;) :
import cv2
import numpy as np
>>> im = np.empty((5,5), np.uint8) # needs preallocated input image
>>> im
array([[248, 168, 58, 2, 1], # uninitialized memory counts as random, too ? fun ;)
[ 0, 100, 2, 0, 101],
[ 0, 0, 106, 2, 0],
[131, 2, 0, 90, 3],
[ 0, 100, 1, 0, 83]], dtype=uint8)
>>> im = np.zeros((5,5), np.uint8) # seriously now.
>>> im
array([[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]], dtype=uint8)
>>> cv2.randn(im,(0),(99)) # normal
array([[ 0, 76, 0, 129, 0],
[ 0, 0, 0, 188, 27],
[ 0, 152, 0, 0, 0],
[ 0, 0, 134, 79, 0],
[ 0, 181, 36, 128, 0]], dtype=uint8)
>>> cv2.randu(im,(0),(99)) # uniform
array([[19, 53, 2, 86, 82],
[86, 73, 40, 64, 78],
[34, 20, 62, 80, 7],
[24, 92, 37, 60, 72],
[40, 12, 27, 33, 18]], dtype=uint8)
pour l'appliquer à une image, il suffit de générer un bruit dans la plage souhaitée, et d'ajouter:
img = ...
noise = ...
image = img + noise