La manière la plus rapide de lister tous les nombres premiers en dessous de N

C'est le meilleur algorithme que j'ai pu trouver.

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

peut-il être encore plus rapide?

ce code a un défaut: depuis numbers est un ensemble non classé, il n'y a aucune garantie que numbers.pop() supprimera le nombre le plus bas de l'ensemble. Néanmoins, cela fonctionne (du moins pour moi) pour certains numéros d'entrée:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True
317
demandé sur bjb568 2010-01-15 02:40:27

30 réponses

avertissement: timeit les résultats peuvent varier en raison de différences dans le matériel ou la version de Python.

ci-dessous est un script qui compare un certain nombre d'implémentations:

Merci beaucoup à stephan pour avoir porté sieve_wheel_30 à mon attention. Le crédit va à Robert William Hanks pour primesfrom2to, primesfrom3to, rwh_primes,rwh_primes1, et rwh_primes2.

des méthodes Python simples testées, avec psyco , pour n=1000000, rwh_primes1 a été l' plus rapide testé.

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| rwh_primes1         | 43.0  |
| sieveOfAtkin        | 46.4  |
| rwh_primes          | 57.4  |
| sieve_wheel_30      | 63.0  |
| rwh_primes2         | 67.8  |    
| sieveOfEratosthenes | 147.0 |
| ambi_sieve_plain    | 152.0 |
| sundaram3           | 194.0 |
+---------------------+-------+

des méthodes Python simples testées, sans psyco , pour n=1000000, rwh_primes2 était le plus rapide.

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| rwh_primes2         | 68.1  |
| rwh_primes1         | 93.7  |
| rwh_primes          | 94.6  |
| sieve_wheel_30      | 97.4  |
| sieveOfEratosthenes | 178.0 |
| ambi_sieve_plain    | 286.0 |
| sieveOfAtkin        | 314.0 |
| sundaram3           | 416.0 |
+---------------------+-------+

de toutes les méthodes testées, permettant numpy , pour n=1000000, primesfrom2à a été le test le plus rapide.

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| primesfrom2to       | 15.9  |
| primesfrom3to       | 18.4  |
| ambi_sieve          | 29.3  |
+---------------------+-------+
Les chronométrages

ont été mesurés en utilisant la commande:

python -mtimeit -s"import primes" "primes.{method}(1000000)"

par {method} remplacé par chacun des noms de méthode.

primes.py:

#!/usr/bin/env python
import psyco; psyco.full()
from math import sqrt, ceil
import numpy as np

def rwh_primes(n):
    # /q/fastest-way-to-list-all-primes-below-n-76377/""" Returns  a list of primes < n """
    sieve = [True] * n
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i]:
            sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
    return [2] + [i for i in xrange(3,n,2) if sieve[i]]

def rwh_primes1(n):
    # /q/fastest-way-to-list-all-primes-below-n-76377/""" Returns  a list of primes < n """
    sieve = [True] * (n/2)
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i/2]:
            sieve[i*i/2::i] = [False] * ((n-i*i-1)/(2*i)+1)
    return [2] + [2*i+1 for i in xrange(1,n/2) if sieve[i]]

def rwh_primes2(n):
    # /q/fastest-way-to-list-all-primes-below-n-76377/""" Input n>=6, Returns a list of primes, 2 <= p < n """
    correction = (n%6>1)
    n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
    sieve = [True] * (n/3)
    sieve[0] = False
    for i in xrange(int(n**0.5)/3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      ((k*k)/3)      ::2*k]=[False]*((n/6-(k*k)/6-1)/k+1)
        sieve[(k*k+4*k-2*k*(i&1))/3::2*k]=[False]*((n/6-(k*k+4*k-2*k*(i&1))/6-1)/k+1)
    return [2,3] + [3*i+1|1 for i in xrange(1,n/3-correction) if sieve[i]]

def sieve_wheel_30(N):
    # http://zerovolt.com/?p=88
    ''' Returns a list of primes <= N using wheel criterion 2*3*5 = 30

Copyright 2009 by zerovolt.com
This code is free for non-commercial purposes, in which case you can just leave this comment as a credit for my work.
If you need this code for commercial purposes, please contact me by sending an email to: info [at] zerovolt [dot] com.'''
    __smallp = ( 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
    61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
    149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
    229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311,
    313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
    409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
    499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
    601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683,
    691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
    809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
    907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997)

    wheel = (2, 3, 5)
    const = 30
    if N < 2:
        return []
    if N <= const:
        pos = 0
        while __smallp[pos] <= N:
            pos += 1
        return list(__smallp[:pos])
    # make the offsets list
    offsets = (7, 11, 13, 17, 19, 23, 29, 1)
    # prepare the list
    p = [2, 3, 5]
    dim = 2 + N // const
    tk1  = [True] * dim
    tk7  = [True] * dim
    tk11 = [True] * dim
    tk13 = [True] * dim
    tk17 = [True] * dim
    tk19 = [True] * dim
    tk23 = [True] * dim
    tk29 = [True] * dim
    tk1[0] = False
    # help dictionary d
    # d[a , b] = c  ==> if I want to find the smallest useful multiple of (30*pos)+a
    # on tkc, then I need the index given by the product of [(30*pos)+a][(30*pos)+b]
    # in general. If b < a, I need [(30*pos)+a][(30*(pos+1))+b]
    d = {}
    for x in offsets:
        for y in offsets:
            res = (x*y) % const
            if res in offsets:
                d[(x, res)] = y
    # another help dictionary: gives tkx calling tmptk[x]
    tmptk = {1:tk1, 7:tk7, 11:tk11, 13:tk13, 17:tk17, 19:tk19, 23:tk23, 29:tk29}
    pos, prime, lastadded, stop = 0, 0, 0, int(ceil(sqrt(N)))
    # inner functions definition
    def del_mult(tk, start, step):
        for k in xrange(start, len(tk), step):
            tk[k] = False
    # end of inner functions definition
    cpos = const * pos
    while prime < stop:
        # 30k + 7
        if tk7[pos]:
            prime = cpos + 7
            p.append(prime)
            lastadded = 7
            for off in offsets:
                tmp = d[(7, off)]
                start = (pos + prime) if off == 7 else (prime * (const * (pos + 1 if tmp < 7 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 11
        if tk11[pos]:
            prime = cpos + 11
            p.append(prime)
            lastadded = 11
            for off in offsets:
                tmp = d[(11, off)]
                start = (pos + prime) if off == 11 else (prime * (const * (pos + 1 if tmp < 11 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 13
        if tk13[pos]:
            prime = cpos + 13
            p.append(prime)
            lastadded = 13
            for off in offsets:
                tmp = d[(13, off)]
                start = (pos + prime) if off == 13 else (prime * (const * (pos + 1 if tmp < 13 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 17
        if tk17[pos]:
            prime = cpos + 17
            p.append(prime)
            lastadded = 17
            for off in offsets:
                tmp = d[(17, off)]
                start = (pos + prime) if off == 17 else (prime * (const * (pos + 1 if tmp < 17 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 19
        if tk19[pos]:
            prime = cpos + 19
            p.append(prime)
            lastadded = 19
            for off in offsets:
                tmp = d[(19, off)]
                start = (pos + prime) if off == 19 else (prime * (const * (pos + 1 if tmp < 19 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 23
        if tk23[pos]:
            prime = cpos + 23
            p.append(prime)
            lastadded = 23
            for off in offsets:
                tmp = d[(23, off)]
                start = (pos + prime) if off == 23 else (prime * (const * (pos + 1 if tmp < 23 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 29
        if tk29[pos]:
            prime = cpos + 29
            p.append(prime)
            lastadded = 29
            for off in offsets:
                tmp = d[(29, off)]
                start = (pos + prime) if off == 29 else (prime * (const * (pos + 1 if tmp < 29 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # now we go back to top tk1, so we need to increase pos by 1
        pos += 1
        cpos = const * pos
        # 30k + 1
        if tk1[pos]:
            prime = cpos + 1
            p.append(prime)
            lastadded = 1
            for off in offsets:
                tmp = d[(1, off)]
                start = (pos + prime) if off == 1 else (prime * (const * pos + tmp) )//const
                del_mult(tmptk[off], start, prime)
    # time to add remaining primes
    # if lastadded == 1, remove last element and start adding them from tk1
    # this way we don't need an "if" within the last while
    if lastadded == 1:
        p.pop()
    # now complete for every other possible prime
    while pos < len(tk1):
        cpos = const * pos
        if tk1[pos]: p.append(cpos + 1)
        if tk7[pos]: p.append(cpos + 7)
        if tk11[pos]: p.append(cpos + 11)
        if tk13[pos]: p.append(cpos + 13)
        if tk17[pos]: p.append(cpos + 17)
        if tk19[pos]: p.append(cpos + 19)
        if tk23[pos]: p.append(cpos + 23)
        if tk29[pos]: p.append(cpos + 29)
        pos += 1
    # remove exceeding if present
    pos = len(p) - 1
    while p[pos] > N:
        pos -= 1
    if pos < len(p) - 1:
        del p[pos+1:]
    # return p list
    return p

def sieveOfEratosthenes(n):
    """sieveOfEratosthenes(n): return the list of the primes < n."""
    # Code from: <dickinsm@gmail.com>, Nov 30 2006
    # http://groups.google.com/group/comp.lang.python/msg/f1f10ced88c68c2d
    if n <= 2:
        return []
    sieve = range(3, n, 2)
    top = len(sieve)
    for si in sieve:
        if si:
            bottom = (si*si - 3) // 2
            if bottom >= top:
                break
            sieve[bottom::si] = [0] * -((bottom - top) // si)
    return [2] + [el for el in sieve if el]

def sieveOfAtkin(end):
    """sieveOfAtkin(end): return a list of all the prime numbers <end
    using the Sieve of Atkin."""
    # Code by Steve Krenzel, <Sgk284@gmail.com>, improved
    # Code: https://web.archive.org/web/20080324064651/http://krenzel.info/?p=83
    # Info: http://en.wikipedia.org/wiki/Sieve_of_Atkin
    assert end > 0
    lng = ((end-1) // 2)
    sieve = [False] * (lng + 1)

    x_max, x2, xd = int(sqrt((end-1)/4.0)), 0, 4
    for xd in xrange(4, 8*x_max + 2, 8):
        x2 += xd
        y_max = int(sqrt(end-x2))
        n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
        if not (n & 1):
            n -= n_diff
            n_diff -= 2
        for d in xrange((n_diff - 1) << 1, -1, -8):
            m = n % 12
            if m == 1 or m == 5:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, x2, xd = int(sqrt((end-1) / 3.0)), 0, 3
    for xd in xrange(3, 6 * x_max + 2, 6):
        x2 += xd
        y_max = int(sqrt(end-x2))
        n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
        if not(n & 1):
            n -= n_diff
            n_diff -= 2
        for d in xrange((n_diff - 1) << 1, -1, -8):
            if n % 12 == 7:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, y_min, x2, xd = int((2 + sqrt(4-8*(1-end)))/4), -1, 0, 3
    for x in xrange(1, x_max + 1):
        x2 += xd
        xd += 6
        if x2 >= end: y_min = (((int(ceil(sqrt(x2 - end))) - 1) << 1) - 2) << 1
        n, n_diff = ((x*x + x) << 1) - 1, (((x-1) << 1) - 2) << 1
        for d in xrange(n_diff, y_min, -8):
            if n % 12 == 11:
                m = n >> 1
                sieve[m] = not sieve[m]
            n += d

    primes = [2, 3]
    if end <= 3:
        return primes[:max(0,end-2)]

    for n in xrange(5 >> 1, (int(sqrt(end))+1) >> 1):
        if sieve[n]:
            primes.append((n << 1) + 1)
            aux = (n << 1) + 1
            aux *= aux
            for k in xrange(aux, end, 2 * aux):
                sieve[k >> 1] = False

    s  = int(sqrt(end)) + 1
    if s  % 2 == 0:
        s += 1
    primes.extend([i for i in xrange(s, end, 2) if sieve[i >> 1]])

    return primes

def ambi_sieve_plain(n):
    s = range(3, n, 2)
    for m in xrange(3, int(n**0.5)+1, 2): 
        if s[(m-3)/2]: 
            for t in xrange((m*m-3)/2,(n>>1)-1,m):
                s[t]=0
    return [2]+[t for t in s if t>0]

def sundaram3(max_n):
    # /q/fastest-way-to-list-all-primes-below-n-76377/""" Returns a array of primes, p < n """
    assert n>=2
    sieve = np.ones(n/2, dtype=np.bool)
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i/2]:
            sieve[i*i/2::i] = False
    return np.r_[2, 2*np.nonzero(sieve)[0][1::]+1]    

def primesfrom2to(n):
    # /q/fastest-way-to-list-all-primes-below-n-76377/""" Input n>=6, Returns a array of primes, 2 <= p < n """
    sieve = np.ones(n/3 + (n%6==2), dtype=np.bool)
    sieve[0] = False
    for i in xrange(int(n**0.5)/3+1):
        if sieve[i]:
            k=3*i+1|1
            sieve[      ((k*k)/3)      ::2*k] = False
            sieve[(k*k+4*k-2*k*(i&1))/3::2*k] = False
    return np.r_[2,3,((3*np.nonzero(sieve)[0]+1)|1)]

if __name__=='__main__':
    import itertools
    import sys

    def test(f1,f2,num):
        print('Testing {f1} and {f2} return same results'.format(
            f1=f1.func_name,
            f2=f2.func_name))
        if not all([a==b for a,b in itertools.izip_longest(f1(num),f2(num))]):
            sys.exit("Error: %s(%s) != %s(%s)"%(f1.func_name,num,f2.func_name,num))

    n=1000000
    test(sieveOfAtkin,sieveOfEratosthenes,n)
    test(sieveOfAtkin,ambi_sieve,n)
    test(sieveOfAtkin,ambi_sieve_plain,n) 
    test(sieveOfAtkin,sundaram3,n)
    test(sieveOfAtkin,sieve_wheel_30,n)
    test(sieveOfAtkin,primesfrom3to,n)
    test(sieveOfAtkin,primesfrom2to,n)
    test(sieveOfAtkin,rwh_primes,n)
    test(sieveOfAtkin,rwh_primes1,n)         
    test(sieveOfAtkin,rwh_primes2,n)

exécute les tests de script que toutes les implémentations donnent le même résultat.

324
répondu unutbu 2017-05-23 11:55:05

question connexe (traitant des générateurs de primes et incluant les benchmarks):

accélérer les opérations bitstring/bit en Python?

pour un python 3 versions utilisant bytearray & compress voir: https://stackoverflow.com/a/46635266/350331

plus rapide et plus de mémoire-Sage Python code pur:

def primes(n):
    """ Returns  a list of primes < n """
    sieve = [True] * n
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i]:
            sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
    return [2] + [i for i in xrange(3,n,2) if sieve[i]]

ou à partir d'un demi-tamis

def primes1(n):
    """ Returns  a list of primes < n """
    sieve = [True] * (n/2)
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i/2]:
            sieve[i*i/2::i] = [False] * ((n-i*i-1)/(2*i)+1)
    return [2] + [2*i+1 for i in xrange(1,n/2) if sieve[i]]

plus Rapide et plus de mémoire-sage numpy code:

import numpy
def primesfrom3to(n):
    """ Returns a array of primes, 3 <= p < n """
    sieve = numpy.ones(n/2, dtype=numpy.bool)
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i/2]:
            sieve[i*i/2::i] = False
    return 2*numpy.nonzero(sieve)[0][1::]+1

une variation plus rapide à partir d'un tiers de tamis:

import numpy
def primesfrom2to(n):
    """ Input n>=6, Returns a array of primes, 2 <= p < n """
    sieve = numpy.ones(n/3 + (n%6==2), dtype=numpy.bool)
    for i in xrange(1,int(n**0.5)/3+1):
        if sieve[i]:
            k=3*i+1|1
            sieve[       k*k/3     ::2*k] = False
            sieve[k*(k-2*(i&1)+4)/3::2*k] = False
    return numpy.r_[2,3,((3*numpy.nonzero(sieve)[0][1:]+1)|1)]

(dur-à-code) pur python version du code ci-dessus serait:

def primes2(n):
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    n, correction = n-n%6+6, 2-(n%6>1)
    sieve = [True] * (n/3)
    for i in xrange(1,int(n**0.5)/3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      k*k/3      ::2*k] = [False] * ((n/6-k*k/6-1)/k+1)
        sieve[k*(k-2*(i&1)+4)/3::2*k] = [False] * ((n/6-k*(k-2*(i&1)+4)/6-1)/k+1)
    return [2,3] + [3*i+1|1 for i in xrange(1,n/3-correction) if sieve[i]]

malheureusement pur-python n'adopte pas la manière plus simple et plus rapide de faire des assignations, et appeler len() à l'intérieur de la boucle comme dans [False]*len(sieve[((k*k)/3)::2*k]) est trop lent. Donc j'ai dû improviser pour corriger la saisie (et éviter plus de mathématiques) et faire des mathématiques extrêmes (et douloureuses)-magie.

Personnellement, je pense que c'est une honte que numpy (qui est si largement utilisé) ne fait pas partie de la bibliothèque standard de python(2 ans après la sortie de python 3 et pas de compatibilité avec numpy), et que les améliorations de la syntaxe et de la vitesse semblent complètement ignorées par les développeurs python.

114
répondu Robert William Hanks 2018-10-02 18:49:37

il y a un bel échantillon du Livre De Cuisine En Python ici -- la version la plus rapide proposée sur cette URL est:

import itertools
def erat2( ):
    D = {  }
    yield 2
    for q in itertools.islice(itertools.count(3), 0, None, 2):
        p = D.pop(q, None)
        if p is None:
            D[q*q] = q
            yield q
        else:
            x = p + q
            while x in D or not (x&1):
                x += p
            D[x] = p

pour que ça donne

def get_primes_erat(n):
  return list(itertools.takewhile(lambda p: p<n, erat2()))

mesurant à l'invite de la coque (comme je préfère le faire) avec ce code en pri.py, j'observe:

$ python2.5 -mtimeit -s'import pri' 'pri.get_primes(1000000)'
10 loops, best of 3: 1.69 sec per loop
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes_erat(1000000)'
10 loops, best of 3: 673 msec per loop

il semble donc que la solution de Livre de cuisine est plus de deux fois plus rapide.

41
répondu Alex Martelli 2015-07-16 13:33:40

en utilisant le tamis de Sundaram , je pense que j'ai battu le record de pure-Python:

def sundaram3(max_n):
    numbers = range(3, max_n+1, 2)
    half = (max_n)//2
    initial = 4

    for step in xrange(3, max_n+1, 2):
        for i in xrange(initial, half, step):
            numbers[i-1] = 0
        initial += 2*(step+1)

        if initial > half:
            return [2] + filter(None, numbers)

comparaison:

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.get_primes_erat(1000000)"
10 loops, best of 3: 710 msec per loop

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.daniel_sieve_2(1000000)"
10 loops, best of 3: 435 msec per loop

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.sundaram3(1000000)"
10 loops, best of 3: 327 msec per loop
29
répondu jbochi 2010-01-20 11:11:19

l'algorithme est rapide, mais il a un défaut grave:

>>> sorted(get_primes(530))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251,
257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349,
353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 527, 529]
>>> 17*31
527
>>> 23*23
529

Vous supposez que numbers.pop() renvoie le plus petit nombre dans l'ensemble, mais ce n'est pas garanti à tous. Les ensembles ne sont pas ordonnés et pop() supprime et renvoie un élément arbitraire , de sorte qu'il ne peut pas être utilisé pour sélectionner le premier suivant parmi les nombres restants.

18
répondu sth 2010-01-15 00:14:04

pour truly la solution la plus rapide avec un N suffisamment grand serait de télécharger une liste pré-calculée de nombres premiers , de la stocker comme un tuple et de faire quelque chose comme:

for pos,i in enumerate(primes):
    if i > N:
        print primes[:pos]

Si N > primes[-1] seulement , puis de calculer les nombres premiers et enregistrer la nouvelle liste dans votre code, donc la prochaine fois, il est tout aussi rapide.

toujours sortir des sentiers battus.

16
répondu Kimvais 2010-01-15 07:58:18

si vous ne voulez pas réinventer la roue, vous pouvez installer la bibliothèque de mathématiques symboliques sympy (Oui c'est compatible Python 3)

pip install sympy

et utiliser la primerange fonction

from sympy import sieve
primes = list(sieve.primerange(1, 10**6))
10
répondu Colonel Panic 2015-07-20 09:06:05

il est instructif d'écrire votre propre code de recherche prime, mais il est également utile d'avoir une bibliothèque fiable rapide à portée de main. J'ai écrit un wrapper autour de la bibliothèque C++ primesieve , l'a appelé primesieve-python

Essayer pip install primesieve

import primesieve
primes = primesieve.generate_primes(10**8)

je serais curieux de voir la vitesse comparée.

6
répondu Colonel Panic 2015-07-20 09:06:46

si vous acceptez itertools mais pas numpy, voici une adaptation de rwh_primes2 pour Python 3 qui tourne environ deux fois plus vite sur ma machine. Le seul changement important est d'utiliser un bytearray au lieu d'une liste pour le booléen, et d'utiliser compress au lieu d'une compréhension de liste pour construire la liste finale. (J'aimerais ajouter un commentaire comme moarningsun si j'étais capable.)

import itertools
izip = itertools.zip_longest
chain = itertools.chain.from_iterable
compress = itertools.compress
def rwh_primes2_python3(n):
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    zero = bytearray([False])
    size = n//3 + (n % 6 == 2)
    sieve = bytearray([True]) * size
    sieve[0] = False
    for i in range(int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        start = (k*k+4*k-2*k*(i&1))//3
        sieve[(k*k)//3::2*k]=zero*((size - (k*k)//3 - 1) // (2 * k) + 1)
        sieve[  start ::2*k]=zero*((size -   start  - 1) // (2 * k) + 1)
    ans = [2,3]
    poss = chain(izip(*[range(i, n, 6) for i in (1,5)]))
    ans.extend(compress(poss, sieve))
    return ans

Comparaisons:

>>> timeit.timeit('primes.rwh_primes2(10**6)', setup='import primes', number=1)
0.0652179726976101
>>> timeit.timeit('primes.rwh_primes2_python3(10**6)', setup='import primes', number=1)
0.03267321276325674

et

>>> timeit.timeit('primes.rwh_primes2(10**8)', setup='import primes', number=1)
6.394284538007014
>>> timeit.timeit('primes.rwh_primes2_python3(10**8)', setup='import primes', number=1)
3.833829450302801
6
répondu Jason 2016-02-28 16:14:14

déterministe de la mise en œuvre de Miller-Rabin test de Primalité sur l'hypothèse que N < 9,080,191

import sys
import random

def miller_rabin_pass(a, n):
    d = n - 1
    s = 0
    while d % 2 == 0:
        d >>= 1
        s += 1

    a_to_power = pow(a, d, n)
    if a_to_power == 1:
        return True
    for i in xrange(s-1):
        if a_to_power == n - 1:
            return True
        a_to_power = (a_to_power * a_to_power) % n
    return a_to_power == n - 1


def miller_rabin(n):
    for a in [2, 3, 37, 73]:
      if not miller_rabin_pass(a, n):
        return False
    return True


n = int(sys.argv[1])
primes = [2]
for p in range(3,n,2):
  if miller_rabin(p):
    primes.append(p)
print len(primes)

selon L'article sur Wikipedia ( http://en.wikipedia.org/wiki/Miller-Rabin_primality_test ) test n < 9.080.191 pour a = 2,3,37, et 73 est suffisant pour décider si N est composite ou non.

et j'ai adapté le code source de la mise en œuvre probabiliste de L'original Miller-Rabin test trouvé ici: http://en.literateprograms.org/Miller-Rabin_primality_test_ (Python)

4
répondu Ruggiero Spearman 2010-01-21 00:17:45

si vous avez le contrôle sur N, le moyen le plus rapide de lister tous les nombres premiers est de les précalculer. Sérieusement. Précomputer est une optimisation négligée.

4
répondu Dave W. Smith 2010-01-21 00:21:40

voici le code que j'utilise normalement pour générer des nombres premiers en Python:

$ python -mtimeit -s'import sieve' 'sieve.sieve(1000000)' 
10 loops, best of 3: 445 msec per loop
$ cat sieve.py
from math import sqrt

def sieve(size):
 prime=[True]*size
 rng=xrange
 limit=int(sqrt(size))

 for i in rng(3,limit+1,+2):
  if prime[i]:
   prime[i*i::+i]=[False]*len(prime[i*i::+i])

 return [2]+[i for i in rng(3,size,+2) if prime[i]]

if __name__=='__main__':
 print sieve(100)

il ne peut pas rivaliser avec les solutions plus rapides affichés ici, mais au moins il est python pur.

Merci d'avoir posté cette question. J'ai vraiment appris beaucoup de choses aujourd'hui.

4
répondu MAK 2010-01-21 16:09:36

pour le code le plus rapide, la solution de numpy est la meilleure. Pour des raisons purement académiques, cependant, je poste ma version de python pur, qui est un peu moins de 50% plus rapide que la version de Livre de cuisine posté ci-dessus. Puisque je fais la liste entière dans la mémoire, vous avez besoin de suffisamment d'espace pour tenir tout, mais il semble assez bien échelle.

def daniel_sieve_2(maxNumber):
    """
    Given a number, returns all numbers less than or equal to
    that number which are prime.
    """
    allNumbers = range(3, maxNumber+1, 2)
    for mIndex, number in enumerate(xrange(3, maxNumber+1, 2)):
        if allNumbers[mIndex] == 0:
            continue
        # now set all multiples to 0
        for index in xrange(mIndex+number, (maxNumber-3)/2+1, number):
            allNumbers[index] = 0
    return [2] + filter(lambda n: n!=0, allNumbers)

et les résultats:

>>>mine = timeit.Timer("daniel_sieve_2(1000000)",
...                    "from sieves import daniel_sieve_2")
>>>prev = timeit.Timer("get_primes_erat(1000000)",
...                    "from sieves import get_primes_erat")
>>>print "Mine: {0:0.4f} ms".format(min(mine.repeat(3, 1))*1000)
Mine: 428.9446 ms
>>>print "Previous Best {0:0.4f} ms".format(min(prev.repeat(3, 1))*1000)
Previous Best 621.3581 ms
3
répondu Daniel G 2010-01-15 07:41:25

Un peu différente de la mise en œuvre d'une demi-tamis à l'aide de Numpy:

http://rebrained.com/?p=458

import math
import numpy
def prime6(upto):
    primes=numpy.arange(3,upto+1,2)
    isprime=numpy.ones((upto-1)/2,dtype=bool)
    for factor in primes[:int(math.sqrt(upto))]:
        if isprime[(factor-2)/2]: isprime[(factor*3-2)/2:(upto-1)/2:factor]=0
    return numpy.insert(primes[isprime],0,2)

Quelqu'un peut-il comparer cela avec les autres horaires? Sur ma machine, il semble assez comparable à l'autre demi-tamis.

3
répondu nolfonzo 2010-09-03 18:37:02

tout est écrit et testé. Donc, il n'est pas nécessaire de réinventer la roue.

python -m timeit -r10 -s"from sympy import sieve" "primes = list(sieve.primerange(1, 10**6))"

nous donne un record de rupture 12.2 msec !

10 loops, best of 10: 12.2 msec per loop

si ce n'est pas assez rapide, vous pouvez essayer PyPy:

pypy -m timeit -r10 -s"from sympy import sieve" "primes = list(sieve.primerange(1, 10**6))"

qui se traduit par:

10 loops, best of 10: 2.03 msec per loop

la réponse avec 247 up-votes listes 15.9 ms pour la meilleure solution. Comparer cette!!!

3
répondu lifolofi 2016-10-05 21:36:54

voici deux versions mises à jour (pure Python 3.6) de l'une des fonctions les plus rapides,

from itertools import compress

def rwh_primes1v1(n):
    """ Returns  a list of primes < n for n > 2 """
    sieve = bytearray([True]) * (n//2)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = bytearray((n-i*i-1)//(2*i)+1)
    return [2,*compress(range(3,n,2), sieve[1:])]

def rwh_primes1v2(n):
    """ Returns a list of primes < n for n > 2 """
    sieve = bytearray([True]) * (n//2+1)
    for i in range(1,int(n**0.5)//2+1):
        if sieve[i]:
            sieve[2*i*(i+1)::2*i+1] = bytearray((n//2-2*i*(i+1))//(2*i+1)+1)
    return [2,*compress(range(3,n,2), sieve[1:])]
3
répondu Bruno Astrolino 2017-10-08 22:04:23

première utilisation de python, donc certaines des méthodes que j'utilise dans ce cas peuvent sembler un peu encombrantes. Je viens tout juste de convertir mon code c++ en python et c'est ce que j'ai (bien qu'un peu lent en python)

#!/usr/bin/env python
import time

def GetPrimes(n):

    Sieve = [1 for x in xrange(n)]

    Done = False
    w = 3

    while not Done:

        for q in xrange (3, n, 2):
            Prod = w*q
            if Prod < n:
                Sieve[Prod] = 0
            else:
                break

        if w > (n/2):
            Done = True
        w += 2

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

pythonw Primes.py

a trouvé 664579 nombres premiers en 12.799119 secondes!

#!/usr/bin/env python
import time

def GetPrimes2(n):

    Sieve = [1 for x in xrange(n)]

    for q in xrange (3, n, 2):
        k = q
        for y in xrange(k*3, n, k*2):
            Sieve[y] = 0

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes2(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

pythonw Primes2.py

Found 664579 amorces dans 10.230172 secondes!

#!/usr/bin/env python
import time

def GetPrimes3(n):

    Sieve = [1 for x in xrange(n)]

    for q in xrange (3, n, 2):
        k = q
        for y in xrange(k*k, n, k << 1):
            Sieve[y] = 0

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes3(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

python Primes2.py

a trouvé 664579 nombres premiers en 7.113776 secondes!

2
répondu smac89 2013-02-20 23:12:55

je sais que le concours est fermé depuis quelques années. ...

néanmoins c'est ma suggestion pour un tamis Python pur premier, basé sur l'omission des multiples de 2, 3 et 5 en utilisant les étapes appropriées pendant le traitement du tamis en avant. Néanmoins, il est en fait plus lent pour N<10 ^ 9 que @Robert William Hanks superior solutions rwh_primes2 et rwh_primes1. En utilisant des ctypes.c_ushort sieve array au-dessus de 1.5* 10^8 Il est en quelque sorte adaptable aux limites de la mémoire.

10^6

$ python-mtimeit-s"import primeSieveSpeedComp" "primeSieveSpeedComp.primeSieveSeq (1000000)" 10 boucles, le meilleur de 3: 46.7 msec par boucle

à comparer:$ python -mtimeit-s " import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes1(1000000)" 10 boucles, best of 3: 43.2 msec par boucle comparer: $ python-m timeit-s " importer primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes2(1000000)" 10 boucles, le meilleur des 3: 34.5 msec par boucle

10^7

$ python-mtimeit-s"import primeSieveSpeedComp" "primeSieveSpeedComp.primeSieveSeq (10000000)" 10 boucles, le meilleur de 3: 530 msec par boucle

à comparer:$ python -mtimeit-s " import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes1(10000000)" 10 boucles, best of 3: 494 msec par boucle comparer: $ python-m timeit-s " importer primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes2(10000000)" 10 boucles, best of 3: 375 msec par boucle

10^8

$ python-mtimeit-s"import primeSieveSpeedComp" "primeSieveSpeedComp.primeSieveSeq (100000000)" 10 boucles, le meilleur de 3: 5.55 sec par boucle

à comparer: $ python -mtimeit-s " import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes1(100000000)" 10 boucles, best of 3: 5.33 sec par boucle de comparer: $ python-m timeit-s " importer primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes2(100000000)" 10 boucles, best of 3: 3.95 sec par boucle

10^9

$ python-mtimeit-s"import primeSieveSpeedComp" "primeSieveSpeedComp.primeSieveSeq (1000000000)" 10 boucles, le meilleur de 3: 61.2 sec par boucle

à comparer: $ python -mtimeit-n 3-s " import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes1 (1000000000) "3 loops, best of 3: 97.8 sec par boucle

à comparer: $ python-m timeit-s " import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes2(1000000000)" 10 boucles, le meilleur des 3: 41,9 sec par boucle 151920920"

vous pouvez copier le code ci-dessous dans ubuntus primeSieveSpeedComp pour revoir ces tests.

def primeSieveSeq(MAX_Int):
    if MAX_Int > 5*10**8:
        import ctypes
        int16Array = ctypes.c_ushort * (MAX_Int >> 1)
        sieve = int16Array()
        #print 'uses ctypes "unsigned short int Array"'
    else:
        sieve = (MAX_Int >> 1) * [False]
        #print 'uses python list() of long long int'
    if MAX_Int < 10**8:
        sieve[4::3] = [True]*((MAX_Int - 8)/6+1)
        sieve[12::5] = [True]*((MAX_Int - 24)/10+1)
    r = [2, 3, 5]
    n = 0
    for i in xrange(int(MAX_Int**0.5)/30+1):
        n += 3
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 2
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 1
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 2
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 1
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 2
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 3
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 1
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
    if MAX_Int < 10**8:
        return [2, 3, 5]+[(p << 1) + 1 for p in [n for n in xrange(3, MAX_Int >> 1) if not sieve[n]]]
    n = n >> 1
    try:
        for i in xrange((MAX_Int-2*n)/30 + 1):
            n += 3
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 2
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 1
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 2
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 1
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 2
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 3
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 1
            if not sieve[n]:
                r.append((n << 1) + 1)
    except:
        pass
    return r
2
répondu ABri 2013-09-25 07:33:23

j'ai testé quelques fonctions d'unutbu , Je l'ai calculé avec le nombre de millions affamés

les gagnants sont les fonctions qui utilisent la bibliothèque de numpy,

Note : Il serait également intéressant de faire une utilisation de la mémoire du test :)

Computation time result

code échantillon

code complet sur mon dépôt github

#!/usr/bin/env python

import lib
import timeit
import sys
import math
import datetime

import prettyplotlib as ppl
import numpy as np

import matplotlib.pyplot as plt
from prettyplotlib import brewer2mpl

primenumbers_gen = [
    'sieveOfEratosthenes',
    'ambi_sieve',
    'ambi_sieve_plain',
    'sundaram3',
    'sieve_wheel_30',
    'primesfrom3to',
    'primesfrom2to',
    'rwh_primes',
    'rwh_primes1',
    'rwh_primes2',
]

def human_format(num):
    # /q/formatting-long-numbers-as-strings-in-python-60557/"Compute prime number to %(n)s" % locals())
    print("")

    results = dict()
    for pgen in primenumbers_gen:
        results[pgen] = dict()
        benchtimes = list()
        for n in nbs:
            t = timeit.Timer("lib.%(pgen)s(n)" % locals(), setup=config)
            execute_times = t.repeat(repeat=nb_benchloop,number=1)
            benchtime = np.mean(execute_times)
            benchtimes.append(benchtime)
        results[pgen] = {'benchtimes':np.array(benchtimes)}

fig, ax = plt.subplots(1)
plt.ylabel('Computation time (in second)')
plt.xlabel('Numbers computed')
i = 0
for pgen in primenumbers_gen:

    bench = results[pgen]['benchtimes']
    avgs = np.divide(bench,nbs)
    avg = np.average(bench, weights=nbs)

    # Compute linear regression
    A = np.vstack([nbs, np.ones(len(nbs))]).T
    a, b = np.linalg.lstsq(A, nbs*avgs)[0]

    # Plot
    i += 1
    #label="%(pgen)s" % locals()
    #ppl.plot(nbs, nbs*avgs, label=label, lw=1, linestyle='--', color=set2[i % 12])
    label="%(pgen)s avg" % locals()
    ppl.plot(nbs, a * nbs + b, label=label, lw=2, color=set2[i % 12])
print datetime.datetime.now().strftime(datetimeformat)

ppl.legend(ax, loc='upper left', ncol=4)

# Change x axis label
ax.get_xaxis().get_major_formatter().set_scientific(False)
fig.canvas.draw()
labels = [human_format(int(item.get_text())) for item in ax.get_xticklabels()]

ax.set_xticklabels(labels)
ax = plt.gca()

plt.show()
2
répondu Bruno Adelé 2017-05-23 12:10:30

Pour Python 3

def rwh_primes2(n):
    correction = (n%6>1)
    n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
    sieve = [True] * (n//3)
    sieve[0] = False
    for i in range(int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      ((k*k)//3)      ::2*k]=[False]*((n//6-(k*k)//6-1)//k+1)
        sieve[(k*k+4*k-2*k*(i&1))//3::2*k]=[False]*((n//6-(k*k+4*k-2*k*(i&1))//6-1)//k+1)
    return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]]
2
répondu SmartManoj 2017-07-19 12:03:37

à mon avis, le le plus rapide de toutes les façons est de coder les nombres premiers de votre code.

alors pourquoi ne pas simplement écrire un script lent qui génère un autre fichier source qui contient tous les numéros, puis importer ce fichier source lorsque vous exécutez votre programme.

bien sûr, cela ne fonctionne que si vous connaissez la limite supérieure de N au moment de la compilation, mais c'est le cas pour (presque) tous les problèmes du projet Euler.

PS: "je pourrais me tromper bien que IFF Parser la source avec des nombres premiers câblés soit plus lent que de les calculer en premier lieu, mais pour autant que je sache Python fonctionne à partir des fichiers compilés .pyc donc lire un tableau binaire avec tous les nombres premiers jusqu'à N devrait être très rapide dans ce cas.

0
répondu akuhn 2010-01-25 01:26:22

désolé de vous déranger mais erat2 () a un défaut sérieux dans l'algorithme.

lors de la recherche du prochain composite, nous avons besoin de tester des nombres impairs seulement. q,p les deux sont impairs; alors q+p est même et n'a pas besoin d'être testé, mais q+2*p est toujours impair. Cela élimine le test" if even " dans la condition de boucle while et économise environ 30% du temps d'exécution.

tant que nous y sommes: au lieu de l'élégant "D. pop (Q, aucun)' get and delete method use ' if q in D: p = D[q],del D [q]' Qui est deux fois plus rapide! Au moins sur ma machine (P3-1GHz). Je suggère donc cette implémentation de cet algorithme astucieux:

def erat3( ):
    from itertools import islice, count

    # q is the running integer that's checked for primeness.
    # yield 2 and no other even number thereafter
    yield 2
    D = {}
    # no need to mark D[4] as we will test odd numbers only
    for q in islice(count(3),0,None,2):
        if q in D:                  #  is composite
            p = D[q]
            del D[q]
            # q is composite. p=D[q] is the first prime that
            # divides it. Since we've reached q, we no longer
            # need it in the map, but we'll mark the next
            # multiple of its witnesses to prepare for larger
            # numbers.
            x = q + p+p        # next odd(!) multiple
            while x in D:      # skip composites
                x += p+p
            D[x] = p
        else:                  # is prime
            # q is a new prime.
            # Yield it and mark its first multiple that isn't
            # already marked in previous iterations.
            D[q*q] = q
            yield q
0
répondu user1016274 2010-08-13 12:04:55

la méthode la plus rapide que j'ai essayée jusqu'à présent est basée sur le Python cookbook erat2 fonction:

import itertools as it
def erat2a( ):
    D = {  }
    yield 2
    for q in it.islice(it.count(3), 0, None, 2):
        p = D.pop(q, None)
        if p is None:
            D[q*q] = q
            yield q
        else:
            x = q + 2*p
            while x in D:
                x += 2*p
            D[x] = p

Voir ce répondre pour une explication de l'accélération.

0
répondu tzot 2017-05-23 12:10:30

je peux être en retard à la fête, mais je vais devoir ajouter mon propre code pour cela. Il utilise environ n / 2 dans l'espace parce que nous n'avons pas besoin de stocker des nombres pairs et je fais également usage du module Python bitarray, réduisant encore drastiquement la consommation de mémoire et permettant de calculer tous les nombres premiers jusqu'à 1.000.000.000

from bitarray import bitarray
def primes_to(n):
    size = n//2
    sieve = bitarray(size)
    sieve.setall(1)
    limit = int(n**0.5)
    for i in range(1,limit):
        if sieve[i]:
            val = 2*i+1
            sieve[(i+i*val)::val] = 0
    return [2] + [2*i+1 for i, v in enumerate(sieve) if v and i > 0]

python -m timeit -n10 -s "import euler" "euler.primes_to(1000000000)"
10 loops, best of 3: 46.5 sec per loop

il a été exécuté sur un MAC OSX 64bit 2,4 GHZ 10.8.3

0
répondu cobie 2013-05-20 10:56:19

j'ai collectionné plusieurs tamis de nombres premiers au fil du temps. Le plus rapide sur mon ordinateur est celui-ci:

from time import time
# 175 ms for all the primes up to the value 10**6
def primes_sieve(limit):
    a = [True] * limit
    a[0] = a[1] = False
    #a[2] = True
    for n in xrange(4, limit, 2):
        a[n] = False
    root_limit = int(limit**.5)+1
    for i in xrange(3,root_limit):
        if a[i]:
            for n in xrange(i*i, limit, 2*i):
                a[n] = False
    return a

LIMIT = 10**6
s=time()
primes = primes_sieve(LIMIT)
print time()-s
0
répondu Stefan Gruenwald 2014-11-02 21:39:27

je suis lent à répondre à cette question, mais il a semblé comme un exercice amusant. J'utilise num PY ce qui pourrait être de la triche et je doute que cette méthode soit la plus rapide mais elle devrait être claire. Il tamise un tableau booléen se référant à ses seuls indices et provoque des nombres premiers à partir des indices de toutes les valeurs vraies. Pas besoin de modulo.

import numpy as np
def ajs_primes3a(upto):
    mat = np.ones((upto), dtype=bool)
    mat[0] = False
    mat[1] = False
    mat[4::2] = False
    for idx in range(3, int(upto ** 0.5)+1, 2):
        mat[idx*2::idx] = False
    return np.where(mat == True)[0]
0
répondu Alan James Salmoni 2015-02-15 22:16:14

Voici une technique intéressante pour générer des nombres premiers (mais pas la plus efficace) en utilisant les compréhensions de la liste de python:

noprimes = [j for i in range(2, 8) for j in range(i*2, 50, i)]
primes = [x for x in range(2, 50) if x not in noprimes]

vous pouvez trouver l'exemple et quelques explications à droite ici

0
répondu Alexander 2018-02-06 14:10:27

en général, si vous avez besoin de calcul rapide des nombres, python n'est pas le meilleur choix. Aujourd'hui, il ya beaucoup d'algorithme plus rapide (et complexe). Par exemple, sur mon ordinateur j'ai eu 2,2 secondes pour votre code, avec Mathematica j'ai eu 0,088005.

tout d'abord: Avez-vous besoin de set?

-1
répondu Ruggero Turra 2010-01-14 23:56:33

c'est une solution élégante et simple pour trouver des nombres premiers en utilisant une liste stockée. Commence par un 4 variables, vous n'avez qu'à tester des nombres premiers impairs pour les diviseurs, et vous n'avez qu'à tester jusqu'à la moitié du nombre que vous testez comme un premier (aucun point dans le test si 9, 11, 13 diviser en 17). Il teste des nombres premiers précédemment stockés comme diviseurs.

    # Program to calculate Primes
 primes = [1,3,5,7]
for n in range(9,100000,2):
    for x in range(1,(len(primes)/2)):
        if n % primes[x] == 0:
            break
    else:
        primes.append(n)
print primes
-2
répondu user3261711 2014-02-02 00:41:24

c'est la façon dont vous pouvez comparer avec d'autres.

# You have to list primes upto n
nums = xrange(2, n)
for i in range(2, 10):
    nums = filter(lambda s: s==i or s%i, nums)
print nums

si simple...

-3
répondu lavee_singh 2015-07-18 13:19:07